
Appendix Q
Software Issue: System Evaluation Considerations

Section I
Software Evaluation Planning

Q–1. Importance of software evaluation
Software plays an important role in determining a system’s effectiveness, suitability, and survivability. The system
evaluator must identify the qualitative and quantitative characteristics of the system’s software that will impact the
system’s capability to support its mission and develop plans to evaluate that software.

Q–2. Software evaluation approach
a. The system evaluator typically uses the CE process to determine the software’s capability to support the Army

user requirements. Software evaluation determines whether the embedded software meets the system and user require-
ments. The size of the software development effort and the criticality of the software to overall system mission success
usually determine the size and scope of the software evaluation. At a minimum, the system evaluator should ensure that
the following activities are included in the system evaluation planning effort:

(1) Identify critical software issues, including the essential software characteristics and critical mission functions that
are necessary to accomplish the system’s mission.

(2) Verify that quantitative thresholds exist for the critical technical parameters of the software components that
implement critical mission functions.

(3) Verify that the software development test cases and test environments are adequate to demonstrate compliance of
the software with technical performance requirements.

(4) Confirm that systematic software developmental test is performed under the most realistic conditions possible
and provide quantitative data that can be analyzed objectively.

(5) Verify that software evaluations are conducted after each planned test event and that these evaluations are
identified in the TEMP and in system evaluation planning documents.

(6) Confirm that an effective software correction process is defined in the developer’s contract and in the Software
Development Plan (SDP).

(7) Ensure that a software measurement program is implemented to support the evaluation objectives and to allow
the system evaluator and acquisition managers to make technical and management decisions.

(8) Ensure that the software measurement program provides the quantitative data to verify that the software meets
the approved exit and entrance criteria and can support the system operational requirements prior to OT.

(9) Identify the Software Support Activity (SSA) that will assume all the Planning, Programming, Budget, Execution
System (PPBES) from the MATDEV dealing with Post Production/Deployment Software Support (PPSS/PDSS) of the
system (that is, program development, test, problem correction, training, and fielding efforts).

b. The system evaluator should understand any factors that may inhibit realistic DT or OT of the software (for
example, the maturity of the software or the availability of test resources). The system evaluator should understand the
impact of the test limitations to verify whether the software can support the system’s mission and address the COI. It
may be beneficial to perform a risk analysis to determine the impact of such limitations on upcoming test events.

c. The TEMP should document the most significant impact of the software on system user requirements. The critical
thresholds that are impacted by software should be defined in Part I of the TEMP. Part I should also list the key
software features and components that allow the system to perform its required operational mission, such as architec-
ture, interfaces, and security levels. The TEMP and the ORD describe the system’s CTPs, which may include software
maturity and software performance measures. The TEMP may also include key software maturity thresholds as exit
criteria to proceed to the next level testing. Given that the Army does not require the use of the Computer Resource
Management Plan (CRMP), either the Integrated Logistics Support (ILS) Supportability Strategy or TEMP should
contain data required to support effective planning of life cycle support for the software product being developed. This
information should include all requirements for PDSS/PPSS.

d. The complexity of software functions of most Army software-intensive systems will often require that software be
identified as a separate evaluation issue. There are many areas of interest in evaluating software, which are listed in
table Q–1. Software MOPs should be developed to address these areas of interest. These software measures provide
objective, quantitative, and qualitative data on the technical and management status of the software process and
products. Table Q–2 describes potential software measures. These measures should address system-level performance
of the software and the impact on the mission.

e. The SEP for a software-intensive system should include the following information—
(1) The relationship between the system CE objectives and the software characteristics that affect the system

mission and COIs.
(2) The relationship between the system mission and COIs and the AIs that have been identified for the software.

228 DA PAM 73–1 • 30 May 2003

Table Q–1
Areas of interest in Army software evaluation

Software areas of interest Definition

Performance How well the software supports system performance.

Interoperability The ability of two or more systems to exchange information and to mutually use the information that has been
exchanged in an Army, joint, and/or combined environment.

Usability The effort required to learn the user interface with the software, to prepare input and to interpret output of the
software.

Reliability The probability that software will not cause the failure of the system for a specified time, under specified con-
ditions.

Maintainability The effort required to modify the software.

Safety How well the software inhibits the system from engaging in unsafe action toward personnel, equipment or
materiel.

Information Assurance How well the software safeguards information and handles unauthorized attempts at system/data access.

Table Q–2
Software areas of interest and potential measures

Software area of interest Potential measures

Performance

System response time Conformance to specified time tolerances.

System accuracy Correctness and defects in system level behavior; how close computations are to expected
results.

Recovery/restart procedures Users can overcome potential processing malfunctions.

Conversion processes Data handling procedures for LOB and ROB processing are described and executed in a
correct manner.

Robustness Legal or illegal operator entries or procedures do not cause system degradation except as
allowed IAW requirements.

Repeatability Consistent conditions or events produce consistent results.

Interoperability

Transmission verification Acceptance of legal transmissions and rejection of illegal transmissions.

Transmission prioritization Transmissions sent or received are prioritized and handled in the proper order.

Stress Data and transaction volumes, loads, varying conditions, or peak processing do not de-
grade the system except as allowed IAW requirements.

Interface considerations Ease of data handling through cycle processing, intersystem data transfer, transmission of
data over communications links, and time sharing links are functioning properly.

Usability

Efficiency The software helps users in their mission.

Affect Users like using the software.

Helpfulness Prompts and HELP messages are useful; the software is self-explanatory.

Control Users can easily control the software and accomplish what they want.

Learnability Users can easily learn and remember how to use the software.

Reliability

Downtime System downtime due to software defects and the impact on the mission.

Time to restore Amount of time needed to restore system to operable state following a software-caused
downing event.

Remaining defects Probability critical software defects remain in the system, and the projected amount of test
time needed to uncover those defects.

Maintainability

Documentation quality Adequate degree of completeness, correctness, consistency and understandability of S/W
documentation to maintain code.

229DA PAM 73–1 • 30 May 2003

Table Q–2
Software areas of interest and potential measures—Continued

Software area of interest Potential measures

Code quality Code quality is measured by programming style (for example, complexity, modularity, com-
menting), reserve memory capacity and software metrics.

Computer resources Memory, processor, storage and network capacity is adequate to allow for anticipated
growth.

Safety

Robustness Legal or illegal operator entries or procedures, or loss of software capability do not cause
system to exhibit hazardous conditions to personnel or materiel.

Vulnerability Degraded operating modes or recovery sequences do not cause undue safety problems for
personnel except as allowed IAW requirements.

Information Assurance

Computer network attack, exploitation
(CNA/CNE)

Time to detect, react, and restore system IAW requirements.

Protection features Attempts at unauthorized use or manipulation are detected and reported IAW requirements.

Vulnerability Assessment of mission impact if system information is compromised.

(3) The analysis and evaluation criteria that will demonstrate compliance with the software technical performance
requirements.

(4) The relationship between the software functions being tested and the system-level test events and scenarios.
(5) The methods and measures that will identify traceability of requirements to test events. Any factors that may

inhibit realistic developmental and operational test of the software.

Q–3. Army software blocking
a. In August 2001, policy was established to serve as the Army acquisition policy for the definition, execution,

management, and synchronization of Army software intensive programs. The basis for the policy was the need to
harmonize requirements across individual systems in order to achieve an integrated and interoperable warfighting
capability. The Army elected to implement the system-of-systems (SOS) software blocking as a means to manage the
interdependencies between individual system programs. The policy serves as the software annex to the SOS.

b. Software blocking requires that each SOS block will be certified as interoperable before it is released for fielding.
Therefore, software blocking relies upon both formal and informal interoperability testing to ensure that systems
individually and collectively achieve the required capability. As a minimum, the Block Execution Management Plan
(BEMP) will identify—

(1) Systems participating in developmental interoperability testing.
(2) Points of contact for each of the participating systems.
(3) Test start/stop dates.
(4) Top level description of test objectives.
(5) Location(s) of testing.
c. The CTSF at Fort Hood, TX, will identify the available windows for block-level developmental interoperability

testing. Windows will be identified by their start/stop dates, a description of assets available to support testing (for
example, CTSF equipment, facilities, and personnel), and any required remote facility interconnect capabilities.

d. In direct support of block certification and interoperability, formal interoperability testing will be conducted to
include DOD or any other formal interoperability tests. Where appropriate, compliance will address areas such as
Information Assurance verification. The formal testing will be conducted in accordance with the CTSF Intra-Army
Certification SOP, DOD, or other relevant interoperability certification policies. Any leveraging of these tests for joint
certification purposes by the JITC will be coordinated through the APTU at the CECOM SEC at Fort Monmouth, NJ.

Q–4. Army software measurement
Army policy requires the use of software measures to affect the necessary discipline in software development process
and assess the maturity of the software products. The Army also requires that software developers address the
following management issues using software measures:

a. Schedule and progress regarding work completion.
b. Growth and stability regarding delivery of required capability.
c. Funding and personnel resources regarding the work to be performed.
d. Product quality regarding delivered products.

230 DA PAM 73–1 • 30 May 2003

e. Software development performance regarding the capabilities to meet program needs.
f. Technical adequacy. Sample measures addressing these management issues can be found in section VI of this

appendix, as well as in the Practical Software and System Measurement Guidebook (see http://www.psmsc.com/). The
system evaluator must consider balancing the software evaluation needs against the software measures already being
collected for the system.

Q–5. Evaluating commercial-off-the-shelf software
DOD policy requires contractors and subcontractors to use commercial items and NDI to the maximum extent possible.
The system evaluator should understand the following when addressing COTS-based software:

a. All system components should go through the same system evaluation and test procedures regardless of their
origin.

b. COTS vendors are under pressure to release products to the marketplace quickly, sometimes with minimal testing
and debugging. Even reputable COTS vendors produce products with defects.

c. Fault isolation in systems with COTS components can be difficult because the system evaluator is forced to make
inferences about how the components work based on the system behavior. Failure in a complex system with several
interacting COTS components compounds this difficulty.

Q–6. Post deployment software support
PDSS refers to modifications or upgrades made to a system’s software following the system’s FRP DR and initial
fielding. See section VIII of this appendix.

a. The PDSS environment generally focuses on correcting reported software errors, thus enhancing the deployed
software performance. The SSA organization conducting PDSS typically collects these changes into a few formal
software releases to minimize the impact on the fielded system. Differences in the amount of change to software and
timing of software releases should be considered in identifying the scope of total T&E required and the extent of T&E
team involvement.

b. When independent system evaluations are necessary, the risk analysis procedure outlined in section VII of this
appendix can help determine the amount of testing needed to support those evaluations. In general, independent system
evaluation is needed when changes in computer resources, such as hardware, software, firmware, or communications—

(1) Have a physical impact on either the operation or support of the system.
(2) Have a noticeable impact on the system’s operational effectiveness, suitability, and survivability, affects user

interfaces, or impact critical mission functions.
(3) Cumulatively effect 15 percent or more of the software units in the system since the last time such evaluations

were made.

Q–7. Post production software support (PPSS)
a. For Mission Critical Computer Resources (MCCR), the MATDEV is responsible for all software support until the

weapon system hardware production is complete and is responsible for the PPBES activities. A MCCR system will
transition into the PPSS phase of its life cycle the first full fiscal year after the weapon system hardware production is
complete. The MATDEV will plan, program, budget, and execute all MCCR weapon system software support
requirements until the transition of PPBES responsibilities from the MATDEV to the designated SSA is completed.
Once the transition is complete, the SSA will assume all PPBES responsibilities for the PPSS of the weapon system.
PPSS requirements and funding data will be submitted by system to HQDA. HQDA (DCS, G–3) prioritization
guidance governs the funding of the PPSS. HQ, TRADOC will review the HQDA (DCS, G–3) prioritization guidance
and recommend adjustments to PPSS priorities based on near-term battlefield requirements.

b. For non-tactical C4/IT systems, the MATDEV is responsible for PPBES activities for assigned programs until the
system is transitioned to the designated SSA. The MATDEV will use the Management Decision Process (MDEP) to
program and budget all PPSS prior to transition to the SSA. PPSS requirements and funding data will be submitted in
accordance with the CIO process funding and prioritization of non-tactical C4/IT systems.

c. Procurement and/or Research, Development, Test and Evaluation (RDT&E) funds will be utilized for all software
support requirements until the weapon system hardware production is completed or in support of significant modifica-
tions. OMA dollars will be utilized for software support after the weapon system hardware production is complete.

d. Coordination of software block upgrades of new software-intensive systems, under an evolutionary acquisition/
spiral development strategy, use RDT&E funds. Fielded increments are maintained though PPSS and use OMA funds.
Software block upgrades and a spiral development process are part of the Army policy for new software intensive
systems. The Army’s Unit Set Fielding (USF) policy seeks to ensure compatibility with other systems in an SOS
architecture. Fielded systems that may be components of an SOS architecture, however, are themselves not static
baselines but may consist of multiple versions in different units depending on the PPSS schedule. This may result in
additional development costs or incompatibilities as a new program releases software block upgrades that can become
incompatible with fielded systems due to ongoing PPSS activities.

231DA PAM 73–1 • 30 May 2003

Section II
Software Evaluation Support

Q–8. Sources of software evaluation support
An ideal software evaluation will assess the software under all possible conditions in the system operational profile.
This means that an effective software evaluation must be based on more than the formal OT that takes place at the end
of system development. OT rarely includes all the environmental conditions and mission profiles that are possible for
the system. The opportunities for evaluating software during a formal OT are limited to “black box” testing. “Black
box” testing assumes that the software functions are correct if system performance is adequate (that is, the appropriate
outputs are received from the corresponding inputs). This provides only a limited window into the technical complexi-
ties of the software. Therefore, evaluation of a software-intensive system requires an aggressive, early assessment of
technical and functional characteristics, using all available sources of data.

Q–9. Modeling and simulation
a. Modeling and simulation has become an integral part of testing complex systems. Because Army software-

intensive systems have grown increasingly complex, T&E of such systems under realistic conditions is difficult, if not
impossible, without putting these systems in a real-world environment. The practicalities of cost, test range space,
safety, and the availability of advanced threat systems or surrogates limit the ability to create these realistic conditions.
M&S can address such limitations. M&S can replicate those conditions that could not be created in a test environment
due to constraints and limitations. M&S also allows the system evaluator to examine a broader set of conditions than
those tested, providing a broader understanding of software and system performance. While not a replacement for
testing software in the target environment, M&S is typically needed to evaluate complex system software.

b. The system evaluator must ensure that each use of M&S that has an impact on the system evaluation has gone
through the required VV&A process to ensure that it provides credible results and satisfies the M&S users’ operational
needs (see AR 5–11 and DA Pam 5–11). The system evaluator will typically be involved in determining the
acceptability criteria for use of an M&S (for example, how closely does the M&S have to reflect reality in order to
meet the needs of the evaluation).

Q–10. Spiral development process
DOD policy has established the evolutionary acquisition strategy as the preferred approach for acquiring systems. An
evolutionary acquisition strategy encourages time-phased development of technical requirements and supports commu-
nications with users. If an evolutionary acquisition approach is not used, DOD policy requires that software develop-
ment and integration still follow a spiral development process in which continually expanding software versions are
based on lessons learned from earlier development. Spiral development is a cyclical, iterative, build-test-fix-test-deploy
process that yields continuous improvements in software. The spiral development process provides several benefits in
evaluating a system’s software, including the following:

a. An opportunity to obtain realistic data to address the system evaluation issues for each increment in the software-
intensive system.

b. A more realistic set of user requirements that are derived from an improved software requirements definition
process where a small initial set of requirements is refined over time to meet changes in technology and user needs.

c. Relatively small releases of software that are demonstrated in an operational environment, rather than a single,
system-level software release.

Q–11. Computer Resources Management Plan
Many Army organizations develop a Computer Resources Management Plan (CRMP) to support acquisition of
software development projects. A CRMP is not required by Army policy and may not be available for every project.
The CRMP describes the factors needed to support effective planning of a software acquisition project and life cycle
support of the software products. A Computer Resources Working Group (CRWG) may provide the information that a
system evaluator needs to coordinate CE activities with the acquisition community, including life cycle activities and
resources to monitor the software development. These activities and resources typically include the software T&E plans
and schedules, the development requirements that the system evaluator expects to see in the RFP, the developer’s plans
for tracking software maturity, and the program manager’s plans for addressing software in the OTRR. Other
information that may be provided in a CRMP includes the following:

a. Resources to support T&E, such as instrumentation, drivers, stimulators, loaders, facilities, and special test
software.

b. The extent of independent verification and validation (IV&V) that will be used in the software development.
c. The software configuration management (CM) program.
d. The software quality program, including failure reporting procedures, metrics, and criteria against which the

software products will be evaluated.

232 DA PAM 73–1 • 30 May 2003

e . T h e l e v e l o f G o v e r n m e n t a c c e s s t o c o n t r a c t o r s o f t w a r e d e v e l o p m e n t a c t i v i t i e s i n o r d e r t o t r a c k s o f t w a r e
development.

f. Post deployment software support responsibilities.

Q–12. Configuration management process
An effective software CM process can provide significant quantitative data to support software evaluation. The CM
process defines the current approved software baseline and software design, including interfaces. It also identifies and
controls software changes throughout the system life cycle. The CM function implements and maintains the trouble
reporting system, and it tracks test results from the lowest level of testing within an organization. Therefore, software
T&E requires an effective CM process in order to define software status.

Q–13. Program review process
Information to support software T&E also may be obtained from the project tracking and oversight activity that is
implemented by the software development organization. The most common activity is for an organization to establish a
program review process. These reviews provide information on the overall technical and management status of the
project. The development organization convenes technical or management reviews that are attended by developer and
acquirer personnel to support effective communication, review project status, surface and resolve outstanding issues,
and determine and concur on strategies to mitigate identified risks. User representatives should also participate in the
review process to provide feedback from the system mission perspective, especially on software functions that have
user interfaces.

Q–14. Software working-level integrated product teams
The PM may form a software working-level integrated product team (SW WIPT) to provide experts in software
development and system acquisition processes. The SW WIPT bridges the gap between Army operational experts and
the developer’s technical software experts. A SW WIPT focuses attention on issues and risks in software acquisition,
development, fielding, and support. SW WIPT members should, at a minimum, include a TRADOC representative or
user representative, the project or system engineer, and software engineers from the SSA, commonly referred to as the
Army life cycle software engineering center (LCSEC), within the MACOM. The SSA participants may provide long-
term support with software development expertise and user domain and interoperability experience. The SSA is often
the only Army organization that can address many Army software engineering issues, including:

a. Discussing the issues and planning for the risks associated with the software acquisition, development, fielding,
and life cycle support.

b. Operational doctrine, reuse, business process reengineering, and domain/architectural issues.
c. Evolutionary improvements, relevant emerging technologies, the state-of-the-practice, and available COTS and

Government-off-the-shelf (GOTS) software.
d. Interoperability, continuity of operations (CONOPS), and supportability.

Q–15. Independent expert reviews
Independent expert reviews may also provide a system evaluator with valuable, software-related information. DOD
acquisition policy requires independent expert reviews of all ACAT I through III software-intensive programs. An
independent expert review team is composed of a small group of software, systems engineering, and technology
experts. The team reviews the program and reports on technology and development risk, cost, schedule, design,
development, project management processes, and the application of systems and software engineering best practices.
The team reports its findings directly to the program manager and the program executive officer or equivalent
management official. If available, these results may provide significant information to the system evaluator.

Section III
Software Evaluation Activities

Q–16. Evaluating software development process
a. The system evaluator should ensure that there has been an assessment of the capability of the organization that is

developing the software. This assessment should determine if the organization has an established, mature process for
developing software, and whether or not the software project is following the process. The primary purpose of a
software process evaluation is to get an early estimate of the quality of the software products to be delivered based on
the maturity of the organization’s development process. The software process evaluation also—

(1) Provides a better understanding of the software developer’s processes and techniques for building and testing
software.

(2) Provides early identification of problems that could potentially lead to operational risks.
(3) Forecasts cost and schedule slips.
(4) Helps the system evaluator understand the inherent software risks to support T&E planning. The system

233DA PAM 73–1 • 30 May 2003

evaluator may choose to participate in a formal software process assessment. In most cases, however, the system
evaluator will have to rely on assessments that have been performed by other organizations or self-assessments that
have been made by the development organization itself.

b. Army acquisition policy also requires a Software Capability Evaluation (SCE) of a potential developer for a
software development contract that meets specified criteria for size, cost, and criticality. An SCE is a formal
assessment of an organization’s software process capability, according to the Software Engineering Institute (SEI)
Software Capability Maturity Model (CMM). DOD policy also requires that contractors for ACAT I or IA programs
undergo a software process evaluation using the CMM, or equivalent, with a goal of being rated at CMM level 3.

Q–17. Evaluating software requirements
A system evaluator should begin the evaluation of the software requirements by reviewing the process that was used to
define them.

a. Software requirements are derived from user requirements. The first step in the development of all systems is for
a user representative to define and document the user requirements that must be implemented for the system to achieve
its mission requirements. Software will then be designed to implement the user requirements through internal,
automated commands. An accurate and complete set of user requirements is the foundation of effective and suitable
software.

b. The developer then draws on the user requirements to define and document the software requirements. Software
requirements include the functional, performance, physical, interface, and other requirements that must be achieved for
the software to support the system. This step includes documenting the methods that will ensure each requirement has
been met.

c. The process used to define the software requirements often has the greatest impact on the level of reliability that
will be achieved in the final software product. Figure Q–1 provides more information on prediction of software
reliability during a software development program. The quality of a software requirements definition process is
determined primarily by the skills of the people who define each level of the software requirements. Skill factors
include the level of familiarity with user requirements, the ability to document these requirements, and the ability to
translate these requirements into system contract specifications. These “quality factors” usually are best defined in
qualitative, not quantitative, terms.

d. Evaluation of the software requirements should also be performed through a series of individual specification
assessments, informal walk-throughs, or formal reviews. Specific activities may include—

(1) Review of the system’s mission and top-level design specifications to determine whether adequate analysis and
understanding of user inputs, feedback, and needs ensure that system requirements are accurate and complete.

(2) Assessment of requirements testability to verify that the ability to collect performance data during system-level
tests, including formal Government tests, is addressed.

(3) Identification of the maximum usage and stress levels on the system computer resources to define the design
limits for software resources, such as timing and memory utilization.

(4) Evaluation of the requirements to determine the degree of completeness, traceability, and stability.
(5) Evaluation of the process to ensure traceability between system requirements and the hardware and software

configuration items comprising the design.
(6) Analysis of applicable metrics, such as requirements traceability and requirements stability.

Q–18. Developmental testing of software
The DT program must provide assurance that the software meets the system requirements before entering OT.
Therefore, the system evaluator must ensure that the software development program includes effective T&E activity.
The software development process must provide continuous product evaluation through the analysis of system require-
ments, software design, and the translation of the design into functional code. To ensure that a software design is
adequate to begin OT, the system evaluator must ensure that adequate “static” analysis has been performed. Static
analysis refers to evaluation procedures that are employed without requiring the actual operation of the software. Static
analysis methods that may be implemented by a PM can be classified as V&V and formal program reviews and audits.

Q–19. Corrective action process
a. Every software developer and maintenance activity must implement a corrective action process to manage the

problems that are detected in the approved software product baseline. The corrective action process must be a “closed-
loop” process in which software Problem Change Reports (PCRs) are written on all detected problems, monitored in a
tracking and reporting system, and marked as closed when the problem is corrected. The same procedures apply for
both hardware and software PCRs. PCRs are sent to the Configuration Control Board to be scored and determined if
and when they should be addressed. Several PCRs are usually bundled into an ECP when changes exceed current
planned cost/schedule estimates.

b. It is important for the system evaluator to understand the software PCR process because PCRs are the most
common measure of software product quality. PCR is the formal description of any problem observed in an “approved”

234 DA PAM 73–1 • 30 May 2003

software product that has completed some level of evaluation and has been placed under configuration control. Other
common terms for a PCR are Software Trouble Report (STR), Software Problem Report (SPR), and software problem.
A PCR not only identifies problems, but also tracks the status of problems until they are resolved. A software PCR can
be written and submitted by anyone, including system developers, system operators, testing personnel, maintenance
personnel, or installation, integration, and production personnel. Section IX of this appendix provides a detailed
description of the software PCRs and the process for managing PCRs. Section VI provides the fault profiles measure
that is used for tracking PCR status.

Q–20. Software unit evaluation
a. Unit test records are routinely produced by the software developer’s CM agent. If metrics are reported on unit

testing, the system evaluator may review the data to gain early insight into the software development effort. Unit test is
the first and lowest level of functional testing that is executed during a software development effort. Unit test is an
informal test and a byproduct of the detailed software design process. The junior programmers who produce the units
of code typically receive the first approval of the detailed unit design from their peer review group or chief
programmer team. After design approval, the junior programmers write the code for the unit and check the single unit
function in a unit test.

b. Unit test records usually report only the number of unit tests that have been passed. To be able to evaluate unit
test records, the system evaluator must understand the completeness of the project’s unit test criteria and the capability
of the CM agents to manage the process. The system evaluator will usually not review records of the software
developer’s individual unit test cases and test results. Review of individual unit records is often too extensive for an
independent evaluation; it is usually performed by a developer’s independent quality assurance (QA) group or the
Government’s software QA or V&V agent. The software developer’s independent QA group can be by choice or as a
requirement for ISO certification. To maintain the ISO 9000 certification, a software developer must have an
independent QA group that periodically audits the development process. Independent in this instance means corporate
in-house but external to the project being audited. ISO 9000 certification can provide the system evaluator a measure of
confidence to the quality of the software development effort.

c. The system evaluator can gain additional insight by understanding the unit design and test criteria. Unit design
and test criteria provide information on the quality of the developer’s test program and software products. Examples of
these criteria are requirements for design modularity and complexity. Modularity measures the characteristics of
software design that ensure functions are independently achieved in each unit of code. Modularity supports functional
independence and traceability of code units and enhances the developer’s ability to find problems in specific units
during test. Because the defective units are functionally independent, they can be fixed and replaced with a lower risk
of introducing other problems in the software. Software complexity is most commonly measured as cyclomatic
complexity, or the number of independent control paths, from entry point to exit point, that can be executed through a
software design unit. A lower number of independent paths require fewer tests to exercise all possible control
sequences in that piece of software, resulting in software with fewer faults.

d. The system evaluator can also use the CM records of the number of approved design units to determine the level
of design stability that has been achieved. The design stability measure tracks the number of changes that have been
made to the approved baseline design of the software. A higher design stability measurement indicates a better chance
of the software achieving a stable test configuration during the development effort. A stable configuration allows the
developer more time to test and debug the software product that will be delivered. The design stability measure may be
monitored by the system evaluator to determine the number and potential impact of design changes, additions, and
deletions on the software configuration. The trend of the measure over time indicates whether the software design is
approaching a stable state. When design changes are made to the software, the impact on previously completed tests
must be assessed. Tests may need to be run again with modifications to test data and conditions.

Q–21. Unit integration evaluation
a. First testing results. Software unit integration test typically provides the system evaluator with the first software

developmental testing results. Although the first software tests are performed at the unit level, these tests are not
formally reported or identified with a pass/fail status. During unit integration, the developer integrates two or more
software units and tests the composite package to ensure it meets the functional specifications. The developer
successively integrates software units until a complete software configuration item (CI) has been tested. The objective
of unit integration and test is to produce a software CI that has been verified to achieve all specified functions for that
item. The system evaluator may find that the data on unit integration and test are formally collected and analyzed by an
independent third party who is either part of the developer’s organization or an agent who is hired by the acquisition
customer. These third-party agents may be responsible for performing software quality assurance or V&V of the code.

b. Fault profile data.
(1) Unit integration test provides useful fault profile data for the system evaluator’s assessment. The Army’s fault

profile metric, which is described in both figures Q–1 and Q–4, measures the number of software problem/change
reports (PCRs) that have been written and submitted to the developer’s corrective action system. The fault profile
metric also measures the number and type of deficiencies in the current approved software baseline. Each problem is

235DA PAM 73–1 • 30 May 2003

classified according to the criticality and impact on the system and user, assigning priority levels of 1 through 5 for the
most critical through the least critical. Problem reports are also classified according to the type of error, such as
requirements, design, code, documentation, or “other.” This measure may also indicate the developer’s ability to
identify and fix faults, if the time to correct problems is also monitored. Any high priority problems should be fixed as
quickly as possible. Not every fix will eliminate the original problem; the fix may even cause new problems in the
overall software package. All code that is created to fix a problem must pass all the levels of test that are required for
new code.

(2) A system evaluator should be aware of the gap between open and closed faults throughout the entire project,
especially during testing toward the end of the development effort. Preferably, there should be no open priority 1 and 2
software problem change reports from previous testing prior to initiating DT. Moreover, there should be no open
priority 1 or 2 software problem change reports from previous testing prior to initiating OT. Problem reports that are
not corrected until late in the development process often do not receive adequate testing.

(3) A system evaluator should be involved in the prioritization of software PCRs during integration and in the
downgrading of any priority 1 or 2 software PCRs prior to any OT. A system evaluator should consider any late fix to
a software problem to be a potential risk to software quality and operational reliability of the system, as well as the
upcoming OT.

c. Test coverage.
(1) To interpret fault profile data accurately, the system evaluator should not evaluate the data without considering

the measures of “test coverage.” Error detection is closely tied to the quality of the developer’s software engineering
and test process. A low number of documented software faults may indicate good processes and products. However, a
low number of documented software faults could also happen if problem reports are not effectively collected, or the
test program is inadequate. Test coverage metrics are needed to provide a more complete picture.

(2) Test coverage describes the extent to which testing has examined both the functional and physical characteristics
of software. Figure Q–1 recommends use of two test-coverage metrics: breadth of testing and depth of testing. The
breadth-of-testing metric measures functional coverage, that is, the number of software functional requirements that
have been demonstrated successfully. This can be described as “black box” testing, since it is only concerned with
obtaining correct outputs from the software, as observed through the system or component. The depth-of-testing metric
measures the test coverage that has been achieved on the software architecture. This measure represents the percentage
of all possible decision points and paths for control and data flow that have been successfully exercised in the software.
This is often described as “white box” testing, since it provides visibility into how the software is constructed.
However, it is important to remember that complex systems usually cannot be tested for all functions, because the test
environment usually cannot completely duplicate the real-world environment. The system evaluator should understand
the limitations of the local test bed and identify those system and software functions that cannot be tested during this
activity.

d. Schedule tracking. The system evaluator should also be aware that schedule overruns might lead to shortcuts in
software development and test, eventually affecting software quality. The system evaluator can track these problems in
advance by evaluating measures of cost and schedule throughout the development effort. Schedule shortfalls often
forecast problems with software quality. Cost and schedule overruns during code implementation can only be recovered
by saving time and money during the final development phase, software integration, and test. It is easy for well-
intentioned, optimistic software developers and their customers to convince themselves that they can save time and
money by reducing an integration test program without degrading the quality of the final product. For example, they
might shorten an integration test program by performing the same test cases on larger pieces of software than was
originally intended. Rather than running a test scenario as each unit is separately integrated into a software build, the
test scenario is run once on a piece of code that includes several units. The same test cases are run but on a software
package that has a much higher level of complexity. The result is that integration tests will exercise far fewer
independent control paths and decision points in the code. The impact on the software reliability is that each untested
path and decision point has the risk of undetected errors that may occur during system operation.

Q–22. Evaluating hardware and software integration
a. The final step in the developer’s test program usually takes place when the completed software components are

integrated with the system hardware. This is typically the last stage of developmental testing performed by the
developer before formal Government-witnessed testing of the software. This integration test phase should be performed
with equipment that is exercised under conditions that are as realistic as possible. This is one of the last opportunities
for the developer to find and fix software problems that may be induced by unanticipated real-world conditions.

b. The system evaluator should be aware of any software-driven system functions that cannot be tested in this final
phase of the developer’s test program. An effective test process ensures that the most critical software functions are
tested, but budget and equipment limitations may preclude testing all functions. These untested software functions may
be an area of high risk for reliability. The system evaluator should also take into account the criticality of those
untested functions to both the system and the user.

c. The system evaluator should be aware of the meaning of the test numbers that are reported. For example, each
number that is reported for the breadth-of-testing metric represents a single software functional requirement that has

236 DA PAM 73–1 • 30 May 2003

been demonstrated successfully. However, the criteria for success are defined by the developer’s test plans. A minimal
test plan will require only that a single input and single control path be executed for the software to produce the proper
function. A more effective test plan would require that the software produce the proper function with several inputs,
including extreme boundary-value inputs and concurrent stress loading of the computer. The system evaluator who
does not understand the criteria for functional test success cannot assess the risk of software functions failing after
delivery.

d. The system evaluator must also understand and assess the selection of “white box” test cases and criteria.
Exhaustive testing of all control and data flow paths in software is impossible. The time that would be required to test
all possible combinations of software paths is usually longer than the useful life of the system. Therefore, software test
planners must be smart in selecting their “white box” test cases and success criteria. Established criteria for the depth-
of-testing metric usually require that software structure be considered to be adequate only after passing test cases that
will exercise a “realistic” number of paths. The criteria usually require that all software decision points (“if X, then Y”)
be tested at least once and that tests be conducted under both representative and maximum stress loads.

Q–23. Evaluation of software qualification test results
a. The system evaluator should review the software qualification test plans and results to determine the level of

realism and test coverage. The SQT is the first formal, system-level test. The objective is to demonstrate to the
developer that the software CI meets its requirements as specified in the contractual system, software, or interface
requirements. The demonstrated requirements may include both functional and physical characteristics. A representa-
tive for the customer should witness each test to verify contractual compliance. The system evaluator should assess the
test cases and test environment for the ability to induce the data and processing loads that are stated in the OMS/MP.

b. Note that formal system-level tests provide only negative assurance of software reliability. Because system-level
tests are performed at the highest level of software complexity, they usually achieve very low functional and physical
coverage. This is especially true during the relatively short software and system qualification tests that are witnessed by
the customer. Because the sample of software paths and functions is small, software errors that are observed in a
formal test indicate the likelihood of many more unobserved software errors in the code. In other words, if software
problems are observed during a system-level test, the system evaluator can be assured that the risk of many more
software failures is high.

c. Finally, the system evaluator should understand that quality cannot be “tested into” any product, especially
software. More testing does not necessarily ensure better quality. Dynamic, system-level tests are the best tool for
validation of a software-intensive system. However, this level of test must be cost-effectively planned and implemented
to provide the widest possible test coverage of the software products. As a method to achieve high-quality and reliable
software, dynamic tests should be viewed as a tool for confirming the absence of faults, rather than the preferred tool
for detecting faults.

Q–24. Software maintenance and support issues
The system evaluator must evaluate the maintainability of the software and certify that all resources necessary for
maintenance, PPSS, or PDSS are available and consistent with planned support concepts. To do this, the system
evaluator should evaluate the following characteristics:

a. The life cycle support agency is prepared to assume the life cycle maintenance of the software.
b. The requisite tools, facilities, and instrumentation have been developed and provided to the life cycle support

agency.
c. The requisite software documentation has been prepared and evaluated by the life cycle support agency as

adequate to support their maintenance responsibilities.
d. The configuration management procedures have been practiced by the software contractor and planned by the life

cycle support agency.

Q–25. Software usability and MANPRINT issues
a. Software usability is the adequacy of the soldier-software interface. The soldier-software or user-system interface

usually is evaluated for two characteristics:
(1) “User friendliness” of the interface.
(2) Adequacy of the system backup modes that can be used when a software function is lost.
b. Various methodologies exist for evaluating software usability, such as the Software Usability Measurement

Inventory (http://www.ucc.ie/hfrg/questionnaires/sumi/). The chosen method should be tailored to the complexity of the
system, requirements of the system, and the life cycle phase. Ultimately, the evaluation is based on the human-factor
characteristics of the user-system interface and their impact on system mission performance. User-friendly features of
the software interface will influence various factors in software operation, such as the number of operator response
errors, the speed of operation, and the level of required training. Operator workload can be measured in terms of the
maximum rate of actions or decisions required during peak periods, and the time needed to enter required data or give

237DA PAM 73–1 • 30 May 2003

instructions for specific functions, as well as the impact on the mission. The system evaluator must determine
quantitative and qualitative measures to assess these characteristics of the software interface.

c. The adequacy of the software backup modes is usually measured by the mean time that the system is down or
operating in a degraded mode with a subjective assessment of the impact on the mission. Software interface problems
are also addressed with a subjective assessment of their impact.

Q–26. Safety issues
a. System safety addresses the possibility of catastrophic system failure that could compromise the safety of people

or property, or result in mission failure. Software safety must be evaluated only in the system context. Software has no
inherent dangers, but systems that are controlled or monitored by software may experience failures that are caused by
software and have safety impacts.

b. The system evaluator should identify the software components that control safety-related functions and give them
special attention. Software safety activities should be initiated on that component and continued through the require-
ments, design, code analyses, and testing phases. The system evaluator also might identify the need for a more formal
evaluation of software safety, based on the probability that the software might cause or fail to prevent failures in a
safety-critical system component.

c. The system evaluator should also consider nonconformance of the software functions with the software require-
ments. Safety hazards may arise in software-intensive systems when the software requirements are incorrect, inappro-
priate, or incomplete.

Q–27. Information assurance
a. The system evaluator must ensure that software is evaluated, independently tested, and verified to ensure it meets

the minimum standards for security and reliability prior to release for operation. Developers of software-intensive
Army systems must include appropriate security features in the initial concept exploration phase of the life cycle
system development model. All software packages providing security services must either have appropriate evaluation/
certification prior to use, or be selected from the National Security Agency (NSA) ISS Products and Services Catalog.
Other evaluated software products may be used based on a valid justification and approval from the designated
a u t h o r i t y . A g e n c i e s r e s p o n s i b l e f o r d i s t r i b u t i o n o f s o f t w a r e s e c u r i t y p r o d u c t s w i l l e n s u r e t h e i r e v a l u a t i o n a n d
certification.

b. Information assurance (IA) is defined as the capability to ensure the confidentiality, integrity, and availability of
information processed by the Army’s information-based systems. IA includes security of information and related
systems, and both the physical and procedural characteristics of software and hardware. IA characteristics of software
must be evaluated to ensure that the security features, practices, procedures, and architecture of the software accurately
mediate and enforce the system security requirements. IA recognizes that interconnected systems create shared risks
and vulnerabilities where an intruder only has to penetrate the weakest link in order to exploit the entire network.

c. Army policy requires that all information systems and networks must be subjected to an established certification
and accreditation process that verifies that the required levels of information assurance are achieved and sustained.
Only Army-approved IA products are authorized for use in an information-based system acquisition. Information
systems and networks will be certified and accredited per DITSCAP (DOD Intelligence Information Systems Certifica-
tion and Accreditation Process) for systems that process sensitive compartmented information. The DITSCAP process
considers the system mission, environment, and architecture while assessing the impact of the operation, or loss of
operation, of that system on the Army’s information infrastructure or the DOD Intelligence Information Systems
Certification and Accreditation process (for systems that process sensitive compartmentalized information).

Q–28. Software evaluation prior to OT readiness review
a. The following guidelines are provided for the system evaluator to ensure that a software-intensive system

development effort is ready for an OTRR:
(1) Ensure that records of all contractor software development tests are available in a summary format, including the

results of software error prediction models that may have been applied.
(2) Ensure that the developer can present objective, quantitative data to verify the level of software maturity that has

been achieved.
(3) Verify that the software baseline that will be “frozen” for use in OT has no critical software errors remaining

and that records are available to validate the developer’s software error corrective action review process.
(4) Ensure that DT exit and OT entrance criteria have been defined for the software, and have been met. All priority

1 and 2 SPRs that will affect the upcoming OT should be closed prior to start of OT for software-intensive systems.
(5) Ensure that software readiness is a formal agenda item in the system OTRR.
b. The system evaluator may find it useful to conduct a more formal risk analysis to determine the likelihood that

the system will encounter problems during the upcoming OT, and the impact of those problems. Paragraph Q–53
provides procedures for conducting this risk analysis.

238 DA PAM 73–1 • 30 May 2003

Q–29. Software evaluation during OT
a. The system evaluator must understand the relationship between the software functions being tested and the

system-level test scenarios. Understanding this relationship requires a record of the traceability of the system require-
ments to the software design and the OT cases. This record can be provided by the data collected for the requirements
traceability metric that is defined in section VI.

b. The system evaluator should also understand the relationship of the load levels on the tested software to the
required operational environment. The software load levels should approximate realistic system operating conditions.
Examples of load levels on software are the rate and volume of data transfer, degree of concurrent software tasking,
and processor or memory utilization.

c. Complete and consistent treatment of all operational requirements for a software-intensive system is not always
possible. The system evaluator must prioritize the system requirements from an operational perspective and limit the
test scenarios to those requirements that are sufficiently critical to need definitive validating and tracking. This
prioritization is based on the criticality of the operational requirement and the frequency with which it will occur in the
field. For example, an OT scenario should exercise the software functional requirement for Control Network Manage-
ment but may not exercise the software function that provides a memory of operator inputs during a certain time
period. The OT scenario must test those system functions that are implemented or impacted by the software and that
must be tested and fully validated before the system can be considered suitable for deployment.

d. The software product baseline that has been certified by the developer’s QA and CM processes must not be
changed with patches or version upgrades during OT, unless severe problems are encountered that may prohibit
completing the test. Changes to the software baseline can be made only if each change is acknowledged and approved
by the MACOM commander. Any changes to software during OT must be supported by an evaluation of the impact of
the change on the consistency of data that is collected by the test. If the software baseline is modified during the test
period, the system evaluator must ensure that regression testing has been completed according to the developer’s test
plan for all new software. Regression testing will verify that the detected problems were actually corrected and that
additional problems were not introduced into the software.

e. If the number of priority 1, 2, or 3 PCRs that are experienced during OT become excessive and impact the test
objectives, the operational tester can suspend or terminate testing in accordance with the policy stated in AR 73–1.

f. Based on the results of the OT, the system evaluator assesses the system’s ESS with respect to the COIs and
related criteria. The system evaluator should base the software evaluation on the effect that observed software errors
have on the system’s critical mission functions, usually involving system functional errors and system downtime.

g. The testers and system evaluator prepare a SER to convey the results of the OT to the appropriate milestone
decision review body. Any problems that were discovered during OT should be recorded in a Test Incident Report
(TIR). If the contract allows, those TIRs caused by software problems should also be entered as PCRs in the
developer’s corrective action system for resolution before final release of the software.

Section IV
Software Fielding

Q–30. Overview of software fielding
a. The developer prepares the products discussed in this section, unless otherwise specified by the acquirer.
b. If a multiple build software acquisition strategy is in effect, planning should identify what software, if any, is to

be fielded to users for each build. Software fielding for a build means those actions necessary to carry out the fielding
plans for that build.

Q–31. Objective of software fielding
The objective of software fielding is to make the executable software available to users and deliver the manuals and
instruction necessary to operate the software. Executable software includes any data files necessary to install and run
the deployed software on target hardware, such as batch files and router tables.

Q–32. Software fielding entry criteria
a. An approved software installation plan (SIP) or equivalent should exist to guide the installation process.
b. The software to be issued should show evidence of successful testing at all appropriate levels, must be accepted

by the MATDEV/FP and user, and must have been certified by QA.
c. If materiel release provisions apply to the system, a request for release must be approved prior to actual field use.

Paragraph 7–11 of AR 700–142 and DA Pam 700–142 provide more detail on these requirements.

Q–33. Test activities involved with software fielding
Extensive testing is not inherent in preparing software packages for distribution. The products developed here are tested
in other activities. Some check out is done during site installation.

239DA PAM 73–1 • 30 May 2003

Q–34. Evaluation activities involved with software fielding
Users and LCSEC/PDSS personnel should be heavily involved in continuous evaluation during this activity to—

a. Review the SIP to verify—
(1) Installation task descriptions identify the organization that will accomplish the task, such as user, developer,

computer operations, PDSS personnel, as well as the quantity of personnel, required skill levels, and installation
schedule.

(2) Provisions for scheduling personnel that will comprise the installation team, students for training, computer
support and technical assistance, and arrangements needed for facilities, lodging and transportation, if required.

(3) Procedures are adequate and complete for—
(a) Installing the software.
(b) Checking out the installed software.
(c) Initializing databases or other software with site-specific data.
(d) Converting data from the current system.
(e) Performing a dry run of the procedures in operator and user manuals.
b. Review the software version description (SVD) to verify that the exact version of software prepared for each user

site is identified. The SVD should provide—
(1) An inventory of materials comprising the version (such as, tapes, disks, documentation, and listings) along with

applicable handling and security instructions or duplication and license restrictions.
(2) Explicit identification of all computer files making up the version.
(3) A list of all changes incorporated into the version since the previous version.
(4) Identification of any site unique data.
(5) Installation instructions and procedures for determining whether the version has been installed properly.
(6) Information on possible problems and known errors in the version. Instructions for recognizing, correcting, or

avoiding these problems should be included.
c. Review technical, maintenance, or other operations manuals providing instructions for users who—
(1) Both operate and make use of the software’s results, as in a software user manual (SUM).
(2) Prepare inputs to and receive outputs from the software but depend on others to operate the software in a

computer center or other centralized or networked software installation, as in a software input/output manual (SIOM).
(3) Operate the software in a computer center or other centralized or networked software installation so that it can

be used by others, as in a software center operator manual (SCOM).
(4) Operate the computers on which the software will run, as in a computer operation manual (COM).
d. Assess the manuals to determine their usability, correctness, and completeness in imparting the procedures

necessary to—
(1) Set up the requisite hardware and software environment for use, including communications equipment.
(2) Operate and interpret results from diagnostic features.
(3) Perform mission tasks or computer runs in different operating modes, such as training, restart, emergency

conditions, degraded modes, communications failures, manual override, shutdown, or typical conditions.
(4) Identify, document, and report problems or malfunctions.
(5) Recover from, work around, or avoid malfunctions.
(6) Ensure continuity of operations.
e. Assure that suitable user training and support training is planned.
f. Ensure that installation occurs in accordance with the SIP.
g. Implement and analyze applicable metrics.

Q–35. Metrics to consider for software fielding
The metrics marked with an X in table Q–3 apply to preparing for software use. Accounting for the cost of performing
this activity and tracking a schedule of events, such as site installations and media preparation and distribution, are the
only metrics associated with this activity.

Q–36. Decision criteria for software fielding
Representative products, documents, and decision criteria that typically should be met during preparation for software
use are shown in table Q–4. Items marked “final” should contain comprehensive material that corresponds to the
current build or release.

240 DA PAM 73–1 • 30 May 2003

Table Q–3
Metrics applicable to software fielding

Applies Metric

X Cost

X Schedule

Computer resource utilization

Software engineering environment

Requirements traceability

Requirements stability

Design stability

Complexity

Breadth of testing

Depth of testing

Fault profiles

Reliability

Table Q–4
Software fielding decision criteria

Primary responsibility Principal products affected Decision criteria

S/W Developer and Gov’t. SCM Executable S/W Files1

SPS (exec. S/W section)
SVD
SUM
SIOM
SCOM
COM
Applicable information for tech., mainte-
nance. or training manuals

Final
Draft
Final
Final (if applicable)
Final (if applicable)
Final (if applicable)
Final (if applicable)
Final (if applicable)

S/W Developer and PM Metrics Report(s) Updates for cost and schedule

MATDEV, MRRB Material Release Approved by applicable decision authority

Notes:
1 As identified in the executable software section of the SPS.

Q–37. Other considerations for software fielding
a. The materiel release process assures that Army materiel is suitable and supportable before the MATDEV may

transfer accountability and control of the materiel to users. Systems containing software follow this process. Materiel
release actions in support of new procurement, reprocurement, and system changes must also be supported by
assessments or evaluations conducted by the independent developmental and operational evaluators. A software
supportability statement is included in the materiel release package.

b. The following subparagraphs address software changes that fall under AR 70–142 materiel release provisions
(whether embedded, proprietary, or non-development software). Adding, modifying, or removing software is consid-
ered a change.

(1) Software that may significantly change the system’s—
(a) Mission function.
(b) Mission capability.
(c) Performance parameters.
(d) Interoperability requirements.
(e) Software architecture.
(f) Maintainability.
(g) Reliability.
(h) Safety.
(2) A block update consisting of software changes of more than 30 percent source lines of code (SLOC), or 30

percent cumulative SLOC changes since the previous materiel release approval.

241DA PAM 73–1 • 30 May 2003

(3) A block update consisting of a software translation of 30 percent equivalent SLOC to a different computer
programming language.

(4) Software that is significantly changed to run on a different computer processor or different computer system
configuration.

(5) Software changes that require new test equipment for the user or impact 25 percent or more of the training
program of instruction.

Section V
Software Transition

Q–38. Overview of software transition
a. The developer prepares the products discussed in this section, unless otherwise noted.
b. If a multiple build software acquisition strategy is in effect, planning should identify what software, if any, is to

be transitioned to the support agency for each build. Software transition for a build means those actions necessary to
carry out the transition plans for that build.

Q–39. Objective of software transition
a. This activity’s objective is delivery of all end item executable software, associated source files, computer program

support manuals, and instruction necessary for the support agent to—
(1) Operate the deployed executable software on its target hardware.
(2) Regenerate the executable software.
b. Executable software includes any data files necessary to install and run the deployed software on target hardware,

such as batch files and router tables. Source files, as used here, also include any ancillary data files essential to re-
creating executable software from source materials.

Q–40. Entry criteria for software transition
a. An approved STrP should exist to guide the developer’s transition process.
b. An updated CRLCMP should exist to guide the support agent’s transition process. Elements of the STrP may be

incorporated into the CRLCMP by reference to reduce duplication.
c. Physical and functional configuration audits of software products to be delivered should occur prior to the

completion of this activity for each build.

Q–41. Test activities involved with software transition
Extensive testing of target software is not inherent in preparing software materials for transition. However, the
developer should demonstrate to the acquirer that the deliverable software can be regenerated (for example, compiled,
linked, and loaded into an executable product) and maintained using the hardware, software, and facilities identified in
the STrP. Some check out is done as part of the support site installation process.

Q–42. Evaluation activities involved with software transition
a. A software maintainability evaluation with subsequent supportability statement is required for materiel release.

This is prepared by the LCSEC/PDSS agent.
b. LCSEC/PDSS personnel should be heavily involved in continuous evaluation during this activity to—
(1) Review the STrP to verify that all resources needed to control, copy, and distribute the software and its

documentation, and to specify, design, implement, document, test, evaluate, control, copy, and distribute modifications
to the software are identified and described. Resource descriptions include—

(a) Facilities (buildings, rooms, power, safety, and security provisions).
(b) Hardware (models, versions, configurations, manuals, source of supply, and licensing provisions).
(c) Software (names, version numbers, release numbers, configurations, manuals, vendor support, and data rights).
(2) Ensure the STrP provides a schedule for transition activities, addresses training, and identifies number, type,

skills levels, and security clearances required for support personnel.
(3) Assure that the SSDD reflects the “as built” system.
(4) Assure that the software product specification (SPS) is complete and up to date.
(5) Review the SVD to verify that the exact version of software prepared for the support site and each user site is

identified. The SVD should provide—
(a) An inventory of materials comprising the version (such as, tapes, disks, documentation, and listings) along with

applicable handling and security instructions or duplication and license restrictions.
(b) Explicit identification of all computer files making up the version.
(c) A list of all changes incorporated into the version since the previous version.
(d) Identification of any site unique data.

242 DA PAM 73–1 • 30 May 2003

(e) Installation instructions and procedures for determining whether the version has been installed properly.
(f) Information on possible problems and known errors in the version. Instructions for recognizing, correcting or

avoiding these problems should be included.
(6) Review software maintenance manuals providing instructions for support personnel who—
(a) Program the computers on which the software was developed or on which it will run, as in a computer

programming manual (CPM).
(b) Program or reprogram firmware devices in which the software will be installed, as in a firmware support manual

(FSM).
(7) As it applies to each support task, assess the manuals to determine their usability, correctness, and completeness

in imparting the procedures necessary to—
(a) Set up the requisite hardware and software programming environment.
(b) Operate and interpret results from diagnostic features.
(c) Describe the physical characteristics of the support equipment or target hardware, as applicable, that must be

known to perform programming tasks. Examples are word lengths, interrupt capabilities, hardware operating modes,
memory attributes, timers, clocks, input/output characteristics, sequencing requirements, and special features.

(d) Install, replace or repair firmware devices including contingencies to preserve continuity of operations when
deployed.

(e) Ensure classification security is safeguarded.
(f) Identify, document, and report problems or malfunctions.
(g) Recover from, work around, or avoid malfunctions.
(8) Assure that suitable support personnel training is planned, if applicable.
(9) Assure that a physical configuration audit occurs prior to acceptance of transitioning material identified in the

SPS.
(10) Implementation and analysis of applicable metrics.

Q–43. Metrics applicable for software transition
The metrics marked with an X in table Q–5 apply to software transition. In addition to cost and schedule reporting, an
assessment of software maintenance capability may be appropriate for organic or contracted support organizations
whose comparable prior experience is limited.

Table Q–5
Metrics applicable to software transition

Applies Metric

X Cost

X Schedule

Computer resource utilization

X Software engineering environment

Requirements traceability

Requirements stability

Design stability

Complexity

Breadth of testing

Depth of testing

Fault profiles

Reliability

Q–44. Decision criteria for software transition
Representative products, documents, and decision criteria that typically should be met during preparation for software
transition are shown in table Q–6. Items marked “final” should contain comprehensive material that corresponds to the
current build.

243DA PAM 73–1 • 30 May 2003

Table Q–6
Software transition decision criteria

Primary responsibility Principal products affected Decision criteria

S/W Developer and Gov’t. SCM Executable S/W Files
Source files
SPS
SVD
SSDD
CPM
FSM

Final
Final
Final
Final
Final (“as built” configuration)
Final (if applicable)
Final (if applicable)

S/W Developer and PM,
Gov’t SQA, and Gov’t SCM

Functional configuration audit (FCA) and
Physical configuration audit (PCA)

Metrics Report(s)

Final

Updates for cost and schedule; SEE if mainte-
nance capability unproven

Section VI
Army Software Metrics

Q–45. Introduction
a. This section provides 14 examples of software metrics that can be used to gather information on the status of

software throughout the life cycle of Army software-intensive systems. The 14 examples are provided only to offer the
reader a detailed description of common software metrics in various phases of software development. Army managers
are encouraged to collect metrics that address the unique issues and information needs of their organizations or
acquisition programs. The Practical Software and Systems Measurement initiative provides guidance on the process to
derive these other issue-driven metrics.

b. The overall objective of software T&E is to determine the level of maturity that has been achieved in software.
Software maturity is a measure of the completeness of the software development effort and the extent to which the
software products have been validated to meet established requirements. These requirements include all established
criteria, such as functional performance, quality, and supportability. It is impossible to establish a single methodology
for evaluating software maturity, due to the wide variety of acquisitions strategies, systems, and software architectures.
However, for each specific system that is evaluated, it is important to have a well-defined process to determine the
achieved software maturity at any point in time. Software maturity should be determined by a set of software metrics
that provide objective, quantitative data on the software status. Each software management program should define the
procedures and metrics that are most appropriate to measure software maturity.

c. Software metrics are only one of many factors to consider when evaluating software maturity. Many activities
contribute to an overall evaluation of software maturity. However, the results of all activities cannot all be expressed as
quantitative measurements, and qualitative characteristics must also be considered in any software evaluation. Quantita-
tive measurement data, rather than qualitative ratings, should be used whenever possible as the basis to derive
information on the status of software. Quantitative measures, or metrics, are more objective and less subject to the
opinion or interpretation of the persons who collect and report the data.

Q–46. Policy requirements
a. Previous Army policy required program managers (PMs) to use and report 12 of the metrics that are presented as

examples in this appendix. However, acquisition reform policy precludes PMs from requiring developers to use and
report a specific set of metrics. The 14 metrics are presented as examples of measures that have proven useful for
managing risk in software-intensive programs. The description of each metric includes a tailoring section with
suggestions for alternative implementations. The PMs also have the flexibility to tailor each metric to address their
specific information needs or to use data that their software developer already collects.

b. The Defense Acquisition Guidebook encourages PMs to use a software measurement process in planning and
tracking the software development program and to assess and improve the software development process and the
associated software product.

Q–47. Classification of metrics
a. The 14 example metrics can be mapped to the 7 Practical Software and Systems Measurement (PSM) common

issues, as shown in table Q–7.

244 DA PAM 73–1 • 30 May 2003

Table Q–7
Army practical software and systems measurement (PSM) common issues and software metrics

PSM common issues Army software metric

Schedule and Progress - Schedule
- Development Progress

Resources and Cost - Cost
- Manpower (optional)

Product Size and Stability - Requirements Traceability
- Requirements Stability
- Design Stability

Product Quality - Computer Resource Utilization
- Complexity
- Breadth of Testing
- Depth of Testing
- Fault Profile
- Reliability

Process Performance - Software Engineering Environment

Technology Effectiveness - Program-Specific Issues and Measures

Customer Satisfaction - All Army Example Metrics

b. Software development projects typically track the information and collect the data items needed for the metrics
described in this chapter. This detailed data, however, is often used only at lower levels of management within a
developer’s organization. Summaries are not usually reported to higher level managers in a form suitable to support
program management decisions. The suggested metric displays presented in this chapter should be annotated with
program-specific information. The resulting information displays will provide program managers with the insight
needed to make informed decisions on software management issues. Displays other than those suggested may be
appropriate, depending on the decisions to be made.

c. Several metrics are often needed to evaluate an activity or an issue of interest. For instance, to address whether a
program can remain on schedule, relevant metrics include schedule, requirements and design stability, development
progress, depth and breadth of testing, and fault profiles. Each metric description includes management information and
correlations with other metrics where analysis of program issues takes place.

Q–48. Metrics program considerations
In order to gain the most useful insight into software processes and products, the following should be considered when
planning a metrics program or when analyzing metrics data—

a. Be sure the metric data definitions are consistent. For example, the definitions for unit, module, function, and
lines of code should be established and followed for the project by all involved in collecting and interpreting the
metrics.

b. Metric displays should be combined with other qualitative information. Decision makers must consider program
issues when analyzing and evaluating metrics data.

c. Metric displays should be used to portray trends over time, rather than placing too much importance on a
calculated value at a single point in time.

d. Never use metrics to evaluate personnel. People will focus on manipulating metrics rather than doing their jobs.
e. Metrics can be expensive in terms of resources. Tailor them to use data already available from the software

developer.

Q–49. Metrics tables
a. Tables Q–8 through Q–21 contain an example for each of the 14 Army metrics. These tables are intended to

assist PMs in selecting appropriate software measures and specify the related data and implementation procedures. This
guidance represents only a starting point for selecting and specifying software measures for a specific project. It is
recommended that PMs augment and modify this information to meet individual project requirements.

b. Each example software metric table provides two columns of information. The first section, Selection Guidance,
provides information to select a metric that is appropriate for a particular project. The second section, Specification
Guidance, provides guidance to help define the appropriate data and implementation requirements. The elements of
each column are described in the following paragraphs:

— Project application. Information that helps to identify if the measure is applicable to specific types of projects. The
information addresses applicability with respect to the project life-cycle phase, functional domain, and the size,
scope, type, and origin (new, reused, and COTS) of the system. This information specifically addresses applying

245DA PAM 73–1 • 30 May 2003

the measure to real-time, data-intensive, and other types of systems. It also identifies the life-cycle phases in which
the measure is most useful and the overall use of the measure within Government and industry.

— Process integration. Helps determine the applicability of the measure to different program and technical manage-
ment processes. The information addresses particular program management practices, data availability and cost, and
other process characteristics.

— Usually applied during. Defines the applicability of the measure to different system process activities. These
activities include requirements analysis, design, implementation, and integration and test. These activities should
not be construed to be sequential but can take place during any phase of the life cycle or concurrently during the
same phase. The information in this section also addresses the type of data (estimates or actuals) that is generally
available with respect to the identified activities.

— Typical data items. The data items that are typically measured and collected. For example, the Effort measure has
the Number of Labor Hours as one of its data items.

— Typical attributes. The descriptive data on a characteristic or property assigned to a measurement data item that is
used to sort and correlate the data in a project. For example, the number of lines of code data item for the Lines of
Code measure includes the attributes of language, source, and version.

— Typical aggregation structure. The structure by which data are organized and aggregated to the project level. The
typical aggregation structures are based on the development activity (such as requirements analysis, design,
implementation, and integration and test), the components (such as CI or unit), or the functions. The Work
Breakdown Structure (WBS) is a combination of activity and component structures.

— Typically collected for each. The noted activity or design component level at which the developer typically collects
the data items for the measure.

— Data items—additional information (optional). Provides additional information to help specify the data items for
the measure or provides alternatives to the specified data items.

— Count actuals based on. Typical activities or exit criteria for the listed data elements. This information helps to
determine when a measure is counted as an actual, or when an activity or event is complete. Normally only one of
these options is used.

(1) Cost metric.
(a) Army metric information. The cost metric at table Q–8 reports the difference between budgeted and actual cost

for a specific product or activity and answers questions such as—

— Are project costs in accordance with budgets?
— Will the target budget be achieved, or will there be an overrun or surplus?
— What WBS or project elements or tasks have the greatest variance?
— Will I be able to complete the project on time?

Table Q–8
Software Metric—Cost Common Issue—Resources and Cost

Selection guidance Specification guidance

Project application Typical data items
- Applicable to any project that uses a cost and schedule system,
such as a Cost/Schedule Control System Criteria (C/SCSC).

Process integration
- Cost and schedule data are required on most large Government
contracts; therefore, it is often readily available. This data should
be based on a validated cost accounting system using a WBS.
- Cost can be difficult to track without an automated system tied to
the accounting system.
- Cost data provided by the Government tends to lag other
measurement information due to time lag associated with formal
reporting requirements.
- Limited in applicability if costs are planned and expended on a
level of effort basis.
- Each WBS element should be linked to a software product with
measurable criteria for completion of the product.

- Planned cost (dollars).
- Actual Cost (dollars).
- Earned Value—Budgeted Cost of Work Scheduled (BCWS): the
sum of the budgets for all WBS elements that are scheduled to be
accomplished within a given period of time.
- Budgeted Cost of Work Performed (BCWP): the sum of the
budgets for WBS elements that were actually completed within a
given period of time.
- Actual Cost of Work Performed (ACWP): the cost actually incurred
to complete WBS elements within the given time period.
- Estimated cost at Completion (EAC).
- Budgeted cost at Completion (BAC).

Typical attributes
- Organization.
- WBS element.
- Product.

246 DA PAM 73–1 • 30 May 2003

Table Q–8
Software Metric—Cost Common Issue—Resources and Cost—Continued

Selection guidance Specification guidance

Usually applied during
- Project Planning (Estimates).
- Requirements Analysis (Estimates and Actuals).
- Design (Estimates and Actuals).
- Integration and Test (Estimates and Actuals).
- Implementation (Estimates and Actuals).
- Operations and maintenance (Actuals).

Typical aggregation structure
- Organization.
- WBS element.
- Product.

Typically collected for each
- Project or WBS element.

Count actuals based on
- WBS component complete to defined exit criteria.
- Product delivery.

(b) Management information.

— Software cost elements may include any expenditure required to develop or maintain a software product. The key to
proper application of the Cost metric is to identify those WBS elements pertinent to software that pose risk to the
overall program.

— Exceeding the budget allocation at any point in a program is cause for concern and investigation. This is easily
detected as a variance less than zero (for either cost or schedule). Consistently or increasingly negative values for
variances indicate that the system may be delivered behind schedule or may exceed the budget.

— Cost is associated with all products and activities and can be related to all other metrics. In general, an unfavorable
trend in some other metric may adversely affect cost.

— The Cost metric compares actual software expenditures to the original budget. When assessing overall cost status,
however, consider the amount of unfinished work to be done under the remaining budget. Other metrics that show
the remaining schedule events, requirements not yet traced and implemented, and number of unresolved software
faults provide information about the amount of work remaining. Insight into the risk of achieving software maturity
can be derived by estimating the cost of rework to fix faults and to complete the trace and implementation of
requirements.

— Be aware that cost information may arrive as much as 60 to 90 days behind the delivery of other metric data. When
evaluating other metrics with cost, be sure that comparable time periods are examined.

(c) Indicators.

— Figure Q–1 shows a plot of performance in terms of percentage variance from plan. The two measures plotted on
the graph were calculated as—
Schedule Variance = (BCWP - BCWS) / BCWS
Cost Variance = (BCWP - ACWP) / ACWP

— Results near zero indicate that the project is proceeding according to plan. Negative results are an indication that
the project is behind schedule or over budgeted cost. Positive results indicate the project is ahead of schedule or
under budgeted cost. Thresholds of +/- 10 percent commonly are used to trigger corrective action.

— Alternatively, the cumulative ratio of budgeted to actual values can be computed as follows:
Schedule performance index = BCWP / BCWS
Cost performance index = BCWP / ACWP

— Plotting these measures yields a target value of 1.0 when performance matches the plan.
— Figure Q–1 indicates that the project has been behind schedule and should have been investigated. It may be related

to either actual performance improvement or to the accounting process. Performance for the last 3 months is outside
thresholds, indicating that the project is seriously behind schedule and a new plan is necessary.

— Figure Q–2 is a line chart indicator example showing the cumulative spending plan, planned funding increments,
total cost budget, and actual cost.

247DA PAM 73–1 • 30 May 2003

Figure Q–1. Cost and schedule performance

Figure Q–2. Cost indicator

248 DA PAM 73–1 • 30 May 2003

(2) Software Engineering Environment (SEE) metric.
(a) Army metric information. The Software Engineering Environment (SEE) metric at table Q–9 compares an

organization’s defined process with the requirements of an accepted reference model. The rating results from an
assessment of the organization’s process capabilities. A published process model guides the assessment. With the
reference model rating and assessment findings, the organization can identify opportunities for improving processes and
can measure progress. This measure is sometimes used to evaluate competing suppliers. Staged-view process models
provide a single, overall rating for organizational process maturity and a profile of the achieved process components.
Continuous-view process models provide a capability rating for each process component that is assessed (rather than a
single organizational rating). The quantitative measurement results are limited to the date of the assessment or
evaluation and the awarded rating level. However, the most useful assessment information is qualitative, including
strengths and weaknesses of various process components. This measure answers questions such as—

— What is the current process maturity or capability rating of the organization?
— What process components are established and practiced?
— What management and technical practices can be improved?
— Does the supplier meet the minimum process maturity or capability requirements?

Table Q–9
Software Metric—Software Engineering Environment (SEE) Common Issue—Process Performance

Selection guidance Specification guidance

Project application
- Normally measured at the organizational level.
- Useful for organizations and projects of all sizes.

Process integration
- Rating may be used by the acquirer as a source selection
criterion or by the supplier as a competitive advantage.
- Applied using a software assessment model.

Usually applied during
- Project Planning (Actuals).
- Requirements Analysis (Actuals).
- Design (Actuals).
- Implementation (Actuals).
- Integration and Test (Actuals).
- Operations and Maintenance (Actuals)

Typical data items
- Date of assessment.
- Reference model rating.
- Key Process Areas (KPA) of the model that were examined.

Typical attributes
- Process identifier.
- Reference model identifier.
- Project assessed.
- Organization.
- Assessment type (formal or informal).

Typical aggregation structure
- Organization.
- Activity.

Typically collected for each
- Organization.

Count actuals based on
- Completion of assessment.

(b) Management information.

— The SEE rating provides a consistent measure of the developer’s ability to use modern software engineering
techniques in the development process, and therefore the developer’s ability to instill such principles and character-
istics in their products. The basic assumption to this approach is that a quality process results in a quality product.
Other metrics and evaluation techniques should be used to examine product quality.

— Although software engineers and managers usually know their problems in great detail, they often disagree on
which improvements are most important. The SEE metric’s use of standard CMM questionnaires allows engineers
and managers to focus on a limited set of key processes and work aggressively toward implementing them, rather
than being overwhelmed by the total process.

— The SEE rating assists the acquirer in identifying and narrowing risk to specific areas generally known to have an
affect on effective software production. The PM should use the SEE metric to focus on determining developer
capabilities and to gauge the ability and willingness of the developer to improve in weak areas over time, rather
than using the SEE metric solely to select one developer over another.

— An assessment often reveals that a developer is proficient in KPAs from a CMM level that is at least one level
higher than the rating number assigned. For that reason, the maturity level number is not the only information
relevant to appraising actual capability.

— SEE assessments conducted by an SEI-trained team are desirable. However, acquirers are encouraged to train their
staff in determining software development capability and to perform informal assessments themselves.

249DA PAM 73–1 • 30 May 2003

— The SEE rating can be used by developers to find and improve weaknesses in their own software development
process.

— Be aware that the SEE metric reflects the developer’s practices only at the time of the assessment. Changes in a
developer’s corporate environment, management philosophy, or other factors may lead to circumstances that
detrimentally affect KPAs over time. Therefore, it may be appropriate to conduct an occasional, informal re-
examination of KPAs previously judged satisfactory.

— A higher SEE rating should have a positive impact on all other metrics.

(c) Indicators.

— Figures Q–3 and Q–4 are examples of Software Engineering Environment (SEE) metric indicators. Figure Q–3
shows an indicator for a continuous-type SEE model, where each process area is evaluated independently.

— Figure Q–4 shows an indicator for a staged SEE model, where the maturity level is achieved successfully
implementing key process areas, yielding a single rating for the maturity level.

Figure Q–3. SEE model indicator—continuous type

(3) Requirements traceability metric.
(a) Army metric information. The requirements traceability metric at table Q–10 measures the level to which

software products have implemented requirements allocated from higher level specifications. Software products include
specifications, software design, code, and test cases. This metric answer questions such as—

— Have all the requirements been allocated to hardware or software components?
— Are the requirements being tested as scheduled?
— Is implementation of the requirements behind or ahead of schedule?

250 DA PAM 73–1 • 30 May 2003

Figure Q–4 . SEE model indicator—staged type

Table Q–10
Software Metric—Requirements Traceability Common Issue—Process Performance

Selection guidance Specification guidance

Project application
- Begins with the first specification produced in response to a de-
fined mission requirement.
- Applicable when an automated information solution is foreseen
and continues throughout the life of the program.

Process integration
- Requires a system-level functional decomposition.
- Needs well-defined requirements for system components and in-
terfaces between system components.
- It is sometimes difficult to define a “function,” but a consistently
applied definition makes this metric more effective.
-Requirements traceability is verified during Integration and Test.
-To reduce risk, prototypes may be used to measure the achieve-
ment of design requirements prior to implementation.
- Some requirements may not be testable until late in the testing
process. Later in software development, the requirements baseline
expands, and measurement data are traceable to components and
test cases.
- Some requirements are not directly testable and must be verified
by inspection.

Usually applied during
- Requirements Analysis (Actuals).
- Design (Estimates and Actuals).
- Integration and Test (Estimates and Actuals).
- Implementation (Estimates and Actuals).

Typical data items
- Names of the two documents assessed.
- Number of system/software requirements in the “traced from” doc-
ument.
- Number of requirements in “traced from” document successfully
traced to the “traced to” document.
- Number of requirements in “traced from” document that could not
be traced to the “traced to” document.
- If a backward trace is also performed between the two documents,
record the number of requirements in the “traced to” document that
were successfully traced back to the “from document,” and the num-
ber of requirements in the “traced to” document that could not be
successfully traced back to the “from document.”

Typical attributes
- Name of the two documents assessed.
- Software release or increment.
- Category of requirement (stated, derived).
- Type of requirement (user, system, component, and software).
- Importance or priority of the requirement.

Typical aggregation structure
- Software release or increment.
- Function.

Typically collected for each
- Software release or increment.
- Integration and Test (Estimates and Actuals).
- Implementation (Estimates and Actuals).

Count actuals based on
- Completion of specification review.
- Successful completion of all tests.

251DA PAM 73–1 • 30 May 2003

(b) Management information.

— Software test management procedures dictate that software requirements should be traced to their individual
qualification test cases. Recording this trace provides visibility to ensure that software requirements are adequately
tested.

— Requirements traceability aids in determining the operational impact of software problems. Failed requirements can
be tracked back to specific mission needs.

— Because of the detailed nature of the requirements traceability metric, collecting the data is most cost effective if it
is a normal product of software development or a V&V effort. The record of requirements traceability should be
part of the developer’s deliverable technical data package.

— The record of requirements traceability is normally prepared by the software developer, but should also be verified
by an independent organization, such as an IV&V agent or LCSEC/PDSS personnel prior to software transition.

— The PM and user representative may also want to evaluate the record of requirements traceability. This evaluation
can be intensive in time and effort, but it is worth the cost when problems or discrepancies are discovered and
corrected early.

— When evaluating the record of requirements traceability, consider the criticality of the requirement to the system
user and the criticality of the resultant software function to system operation. A formal method may be used to
identify requirements that address key user operations or critical system functions. Another method is to identify
the units that appear most often in the record of requirements traceability. These units represent crucial, basic,
software functions because they are needed for multiple system requirements. These units can be developed earlier
and be given increased test scrutiny.

— Incremental or evolutionary acquisition strategies, such as rapid prototyping, where all requirements are not known
in advance or specified to the same degree of detail, require the tracing of requirements to be an iterative process.
As new requirements add more functionality to the system, the record of requirements traceability is revised and
augmented.

— The record of requirements traceability can be a valuable management support tool at system requirement, design,
or other joint reviews. It may also indicate those areas of software requirements or design that have not been
properly defined.

— The PM should establish requirements traceability thresholds for proceeding from one activity to the next. For
example, a threshold may be defined as some percentage of SRS requirements that need to be traced to detailed
design before coding begins. Required levels of traceability should be based on the degree of risk assumed for
requirements that are not traceable to this point. Individual thresholds are system specific.

— During PDSS, if a function is modified, the record of requirements traceability can be used to focus regression
testing on particular CSCIs/units.

— This metric does not provide information on whether tests have been executed or on the pass/fail status of specific
requirements. The record of requirements traceability can be tailored to include test result status if desired.

(c) Indicators. Figure Q–5 is an example of tracing the system requirements specifications (SRS) to the software
requirements specification, CSCI design, unit design, code, and test cases.

(4) Requirements stability metric.
(a) Army metric information. The requirements stability metric shown in table Q–11 indicates the degree to which

changes in the software requirements or changes in the developer’s understanding of the requirements are affecting the
development effort. It also allows for determining the cause and source of requirements changes and answers questions
such as—

— Have the requirements allocated to each incremental delivery or increment changed?
— Are requirements being deferred to later increments?
— How much has functionality changed and which components have been affected the most?
— Is the number of requirements growing? If so, at what rate?

252 DA PAM 73–1 • 30 May 2003

Figure Q–5. Software requirements traceability

Table Q–11
Software Metric—Requirements Stability Common Issue—Product Size and Stability

Selection guidance Specification guidance

Project application
- Data collection can begin with approval of the mission need
statement and during the system requirements analysis activity.
It continues for the life cycle of the system.
- Monthly reporting is recommended.

Process integration
- Sometimes difficult to specifically define discrete requirements.
A consistently applied definition makes this metric more effective.
- Requires a good requirements traceability process.
- Count changes only on a baseline that is under formal
configuration control.
- A description of the impacts (cost, schedule, and functionality) of
each change is required.

Usually applied during
- Project Planning (Estimates).
- Requirements Analysis (Estimates and Actuals).
- Design (Actuals).
- Implementation (Actuals).
- Integration and Test (Actuals).
- Operations and Maintenance (Actuals)

Typical data items
- Software requirements discrepancy status (cumulative total
detected and cumulative total resolved).
- Total number of source lines of code SLOC).
- Total number of SRS requirements.
- Number of requirements added due to approved engineering
change proposals—software (ECP–Ss).
- Number of requirements modified due to approved ECP–Ss.
- Number of requirements deleted due to approved ECP–Ss.
- Number of SLOC affected by approved ECP–Ss (proposed by
user/proposed by developer).
- Number of software units affected by approved ECP–Ss (proposed
by user/proposed by developer).
- Number of ECP–Ss generated from requirements changes
(proposed by the user/proposed by the developer).

Typical attributes
- Increment.
- Change source (supplier, acquirer, user).
- System component.
- Priority (high, medium, low).
- Level of requirement (user, system, software).

Typical aggregation structure
- Software release.

Typically collected for each
- Software release.
- Requirement specification.

253DA PAM 73–1 • 30 May 2003

Table Q–11
Software Metric—Requirements Stability Common Issue—Product Size and Stability—Continued

Selection guidance Specification guidance

Count actuals based on
- Passing requirements inspection.
- Release to configuration management.
- SCCB approval.

(b) Management information.

— When a program begins, the details of its operation and design are rarely complete, so it is normal to experience
changes in the specifications as the requirements become better defined. Prototyping can help alleviate this
problem, or at least trigger refinement earlier in development. When technical reviews reveal inconsistencies,
discrepancy reports are generated. Modifying the design or the requirements to alleviate a problem results in
closing the associated discrepancy report. When a change is required that increases the scope of the system, an
ECP–S is submitted.

— Allowances should be made for lower requirements stability early on in cases where prototyping is used. At some
point, however, the requirements should be firm enough that only design and implementation issues will cause
further changes to the specifications.

— The plot of open discrepancies can be expected to spike upward at each review and to diminish thereafter as the
discrepancies are closed. High requirements stability is indicated when the cumulative discrepancies curve levels
off, as most discrepancies reach closure.

— For each engineering change, the amount of software affected should be reported in order to track the degree to
which ECP–Ss increase the difficulty of the development effort. Only those ECP–Ss approved by the configuration
control board should be tracked.

— The amount of SLOC is somewhat dependent on both the application language and programmer style. The key is to
watch for significant changes to SLOC due to requirements changes.

— The PM should establish thresholds for requirements stability before proceeding from one activity to the next. For
example, after joint technical review of the software requirements, the requirements should be stable enough to
allow coding to begin.

— The PM should also establish time frames for closing requirements discrepancies. Cost and schedule impacts may
be noted when requirements discrepancies remain open after 30 days.

— Causes of program turbulence can be investigated by looking at requirements stability and design stability together.
If design stability is low and requirements stability is high, the transfer from design to code is not working well. If
design stability is high and requirements stability is low, the transfer from the users to the designers is not working
well. If both design stability and requirements stability are low, neither process is working well.

(c) Indicators.

— The line chart in figure Q–6 shows two pieces of requirements-related information. The top line is the trend in the
total number of requirements defined to date. The bottom line represents the total number of changes made each
month (the number of requirements added, changed, and deleted during the month).

— A bar chart, such as the one shown in figure Q–7, provides more detail about whether the changes were additions,
modifications, or deletions.

(5) Design stability metric.
(a) Army metric information. The design stability metric at table Q–12 is composed of two measures. The design

stability measure tracks changes made to the design of the software. The design progress measure shows how the
completeness of the design is advancing over time and provides a context for viewing the design stability measure in
relation to the total projected design. This metric answers such questions as—

— Have changes in functional requirements caused the software design phase to exceed the original schedule?
— Are design changes implemented as requirements changes are approved, or being deferred to later increments?
— What percentage of the design has changed since the last formal software release?
— What components have been affected the most by design changes?
— Is the software design phase on schedule?

254 DA PAM 73–1 • 30 May 2003

Figure Q–6. Requirements stability—total requirements versus changes

Figure Q–7. Requirements stability—type of change

255DA PAM 73–1 • 30 May 2003

Table Q–12
Software Metric—Design Stability Common Issue—Product Size and Stability

Selection guidance Specification guidance

Project application
- Begin tracking as design modules are approved and entered into
configuration management and continue for each version until
completion.

Process integration
- Easier to collect if formal reviews, inspections, or walkthroughs
are included in the development process.
- Data are usually available from the configuration management
system in a mature and disciplined development process.

Usually applied during
- Requirements Analysis (Estimates).
- Design (Estimates and Actuals).
- Implementation (Estimates and Actuals).
- Integration and Test (Estimates and Actuals).
- Operations and Maintenance (Estimates and Actuals).

Typical data items
- Date planned for design/delivery increment completion.
- M = Number of units in current delivery/design.
- Fc = Number of units in current delivery/design that include
design related changes from previous delivery.
- Fa = Number of units in current delivery/design that are
additions to previous delivery.
- Fd = Number of units in previous delivery/design that have been
deleted.
- T = Total number of units projected for system.

Typical attributes
- Product or identifier.
- Increment.
- Technology source (COTS, GOTS, NDI, reuse).

Typical aggregation structure
- Software increment or release.

Typically collected for each
- CI or equivalent.
- Software increment or release.

Count actuals based on
- Each new release or revision of a product or process that
implements changes.

(b) Management information.

— The design stability measure depicts how much of a software delivery, or version, is comprised of pieces reused
without modification from the previous delivery or version. The closer this value is to one, the higher the amount
of reuse.

— The design stability measure should be monitored to determine the number and potential impact of design changes,
additions, and deletions on the software configuration. The trend of the measure over time indicates the software
design is approaching a stable state when the curve levels off at a value approaching one.

— The higher the design stability measure, the better the chances of a stable software configuration. However, a value
close to one is not necessarily good unless M is close to the total number of units required in the system (design
progress measure approaching one), and the number of changes being counted is relatively small and diminishing
over time. Periods of inactivity could be mistaken for stability.

— When design changes are being made to the software, the impact on previously completed testing must be assessed.
Tests may need to be redone and may require modifications to test data and conditions.

— Allowance for exceptional behavior of this metric should be made for the use of rapid prototyping. Prototyping,
while possibly causing lower design stability numbers early in the program, should reduce the number of design
changes needed during later stages of development.

— The PM should establish criteria to define what constitutes a “design change.” A design change implies change to
the code for specific reasons, not a change due to style or coding preferences or to add comments.

— Be aware that this metric does not measure the extent or number of changes in a software unit or the quality of its
code. Other metrics, such as complexity, can contribute to such an evaluation. This metric also does not identify the
specific units that are being changed.

— The design stability metric can be used in conjunction with the complexity metric to highlight changes to the most
complex units. It can also be used with the requirements metrics to highlight changes to units, which support the
most critical user requirements.

— If tracking design stability for builds or increments, T will likely be less than the total number of units projected for
the system but will reflect the total projected for the build.

256 DA PAM 73–1 • 30 May 2003

(c) Indicators.

— Plotting the calculated design stability (S) and design progress (DP) values over time as in figure Q–8 is a
recommended display. Directly below are the formulas for the two design measures.
S = [M - (Fa + Fc + Fd)] / M Where S = design stability measure
DP = M / T Where DP = design progress measure

— Although not indicated in figure Q–8, it is possible for design stability to be a negative value. This may indicate
that everything previously delivered has been changed and more units have been added. If the current delivery
contains fewer units than the previous one, a negative value indicates that the number of units deleted or changed
from the previous baseline was greater than the total number of units in the current delivery.

— If some units in the current delivery are to be deleted from the final delivery, it is possible for design progress to be
greater than one.

Figure Q–8. Design stability versus design progress graph

(6) Complexity metric.
(a) Army metric information. The cyclomatic complexity metric shown in table Q–13 counts the number of unique

logical paths in a software component and can also evaluate the complexity of control or information flow in a system.
This metric provides an indication of both design quality and the amount of testing required. Complexity measures
provide a means to measure and evaluate the structure of software units. Software that is more complex is harder to
understand, test adequately and maintain. Additionally, a highly complex unit is more likely to contain embedded
errors than a unit of lower complexity. The likelihood of introducing errors when making code changes is higher in
complex units. This metric answers such questions as—

— How many complex components exist in the project?
— What components are the most complex?
— What components should be subject to additional testing or reviews?
— What is the minimum number of test cases required to test the logical paths through the component?

257DA PAM 73–1 • 30 May 2003

Table Q–13
Software Metric—Complexity Common Issue—Product Quality

Selection guidance Specification guidance

Project application
- Begin collecting cyclomatic complexity during software design.
- Recompute the complexity measures for units after they are
modified during development and PDSS.
- This metric should not be used unless the software developer
has prior experience in measuring cyclomatic complexity.

Process integration
- Operational requirements may require efficient, highly complex
code.
- Measuring cyclomatic complexity requires a software developer
to invest in specialized automated tools and defines a specific
process for unit design approval.

Usually applied during
- Design (Actuals).
- Implementation (Actuals).
- Integration and Test (Actuals).
- Operations and Maintenance (Actuals).

Typical data items
- Programming language used for design.
- The number of independent control paths through a unit, from
entry point to exit point (also called basis paths).

Typical attributes
- Software unit.
- Software increment or release.

Typical aggregation structure
- Software increment or release.
- Software component.

Typically collected for each
- Unit or equivalent.

Count actuals based on
- Passing inspection.
- Passing component test.
- Release to configuration management.

(b) Management information.

— Automated tools are available for many programming languages and software development environments and
should be used to assist in computing the complexity measures.

— This metric applies throughout the software life cycle. Establishing a complexity threshold during development
stimulates structured programming techniques and limits the number of critical paths in a program during design
and unit implementation. Complexity is used during software testing to identify basis paths, define and prioritize
the testing effort, and assess the completeness of unit testing. During PDSS, proposed changes that would
substantially increase complexity should be examined closely, as they could also increase testing effort and
decrease maintainability.

— It is recommended that this metric be used to limit the inherent complexity of software during design and as code is
being developed. Although the metric provides valuable information, it should not be relied upon as the sole metric
to judge the quality of the design’s implementation.

— Complexity measures should be generated for each unit in the system. They can be grouped for display in a number
of ways (for example, by CSCI, by individual unit, and so forth). Examining complexity at various levels can
provide indications of potential problem areas. These indications give guidance to the developer on areas where
additional concentration is needed. The Government can use complexity to find areas where test efforts should
focus, such as performing code walk-throughs, more comprehensive unit level testing, or stress testing. While the
majority of units can have values less than or equal to the criteria, it is possible that several units can have values
exceeding 10. These units should be examined closely through testing and analysis.

— In cases where units have a high cyclomatic complexity (many independent control paths), various techniques exist
to help identify how complexity may be reduced. One method assesses the unit’s actual complexity to identify
control paths that cannot be tested. This can occur when a program’s data flow and data conditions at various
decision points preclude control from ever taking those paths. These sections are candidates for rewrite or
elimination. Another method examines essential complexity, a gauge of the use of standard structured control
constructs.

— Units planned for reuse should not be overly complex.
— Examining complexity trends over time can provide additional useful insights, especially when combined with other

metrics such as design stability or development progress. For example, late software code “patches” may cause the
complexity of the patched unit to exceed an acceptable limit, indicating that the design rather than the code should
have been changed. Test resources may be better expended on units that have a relatively high structural
complexity rather than on units that will reflect a high number of lines of code tested.

(c) Indicators.

— The bar chart in figure Q–9 identifies the number of components in each complexity range. Each component within
Configuration Item (CI) A was measured using an automated code complexity analysis tool. Component complexity
values were separated into six complexity range categories and graphed. The threshold was also plotted. Figure
Q–10 indicates that most CI A components are less than or equal to the maximum threshold of ten for component
complexity.

258 DA PAM 73–1 • 30 May 2003

— Figure Q–10 was produced by sorting the components by complexity and showing only those components with a
complexity higher than the threshold. CIs with a complexity higher than the threshold are candidates for redesign or
additional review, inspection, and test.

Figure Q–9. Software complexity—number of components

Figure Q–10. Software complexity—greater than threshold

259DA PAM 73–1 • 30 May 2003

(7) Breadth of testing metric.
(a) Army metric information. The breadth of testing metric at table Q–14 addresses the degree to which required

functionality has been successfully demonstrated as well as the amount of testing that has been performed. This testing
can be described as “black box” testing, since it is only concerned with obtaining correct outputs as a result of
prescribed inputs. This measure answers questions such as—

— Have all the requirements been allocated to hardware or software components?
— Are the requirements being tested as scheduled?
— Is implementation of the requirements behind or ahead of schedule?

Table Q–14
Software Metric—Breadth of Testing Common Issue—Schedule and Progress

Selection guidance Specification guidance

Project application
- Data collection should begin when any formal software testing is
performed.
- Test cases must be developed to demonstrate specific functional
requirements in assigned test events, and test results assessed
before meaningful data can be collected.

Process integration
- Requires disciplined requirements traceability and testing
processes for successful implementation.
- Allocated requirements should be testable and mapped to test
sequences. If an automated design tool is used, the data are more
readily available.
- Can be applied for each unique test sequence, such as CI, inte-
gration, system, and regression test, including "dry-runs.”
- Specific test criteria must be defined to determine if a require-
ment has been successfully tested.

Typical data items
- Type of requirements tested and evaluated (such as SRS, IRS,
UFD).
- Total number of that type of requirement allocated to the CSCI.
- Number of requirements tested with all planned test cases.
- Number of requirements successfully demonstrated.
- Test identification (for example, UAT, CSCI qualification testing,
system qualification testing, DT, OT).
- It is advised to track software requirements (SRS, IRS) tested and
passed through higher test levels beyond software qualification
tests.
- This metric does not track the test progress of individual require-
ments. It is advised that the “number of requirements” data items be
cumulative values across tests.

Typical attributes
- Increment.
- Early in a project, the requirements baseline is limited to high-level
specifications. Later in a project, the requirements baseline expands
and measurement data is traceable to components and test cases.
- Some functional requirements may not be testable until late in the
testing process, and others may not be directly testable due to limi-
tations in the test environment.
- Type of requirement (user, system, component, and software).

Typical aggregation structure
- Function.
- Requirements specification.

Typically collected for each
- Type of requirement (user, system, component, and software).
- Specification Reference.
- Test sequence reference.

Count actuals based on
- Successful completion of all tests in the appropriate test sequence.

(b) Management information.

— The breadth of testing metric measures the quantity of testing performed and achieved on documented require-
ments. While most requirements are usually functional, the metric also captures the results of performance,
recovery, safety, security, adaptation, and any other requirements imposed by the acquirer that can be demonstrated
through testing.

— The overall success measure provides insight into the level of progress made toward implementing the approved
requirements baseline.

— Any change in the software requirements baseline requires recalculating the breadth of testing measures.
— Data should be collected throughout developmental test activities, if possible. Typically, breadth of testing is

collected for CSCI qualification testing and system-level tests.
— The breadth of testing metric should also be reported incorporating the results of Government tests, such as DT and

OT, particularly if there are requirements that cannot be adequately demonstrated prior to these system tests.
— PMs should be aware of which software requirements cannot be tested until late in the testing process, or if a

260 DA PAM 73–1 • 30 May 2003

software function cannot be demonstrated at all prior to deployment.
— An innovative option to assign a priority level to each user and software requirement to identify the most important

requirements to be implemented in the software. Data for this metric may be collected and reported separately for
each requirements priority level to provide more detailed visibility into which requirements are being tested.

— As requirements are added and deleted over time, the population of total requirements also changes. This can cause
the reported breadth of testing measures to fluctuate for reporting periods when no testing was performed.

— When changes are made to requirements or design, previous test results for those areas are no longer valid. Until
retesting and re-evaluation of results occurs, the number of requirements tested and number of requirements passed
reported in breadth of testing should drop by the number of requirements to be retested.

— Without clear criteria for test success, the breadth of testing metric may not be effective, due to the subjectivity in
assessing whether a requirement has actually been satisfied.

(c) Indicators.

— Figure Q–11 is a line graph of the number of successfully tested requirements. The graph reveals that testing is
proceeding close to plan, with almost 80 percent of requirements tested to date.

— The indicators in figure Q–12 can help quantify the expected product quality or the product’s readiness to proceed
to the next project phase. The top line shows the total number of interface requirements to be validated for the
product. A second line shows the planned validation path for checking the interfaces. A third line represents the
cumulative number of requirements successfully tested each week.

Figure Q–11. Number of requirements tested

(8) Depth of testing metric.
(a) Army metric information. The depth of testing metric shown in table Q–15 measures the amount of testing

achieved on the software architecture, for example, the extent and success of testing as well as the possible control and
data paths and conditions within the software. This testing is often described as “white box” testing, since there is
visibility into how the software is constructed. This metric answers such questions as—

— Is test progress sufficient to meet the schedule?
— Is the planned rate of testing realistic?
— What functions have been tested or are behind schedule?

261DA PAM 73–1 • 30 May 2003

Figure Q–12. Requirements testing

Table Q–15
Software Metric—Depth of Testing Common Issue—Schedule and Progress

Selection guidance Specification guidance

Project application
- Begin collecting data when a configuration controlled code base-
line is available for unit testing.
- Collect data in regression testing as changes occur in the base-
line during development and PDSS.
- The successful execution of path, statement, input, and decision
point attributes of software structure can be monitored.
- Specific test criteria must be define before meaningful data can
be gathered.
- Each decision point which contains an “or” statement should be
tested at least once for each of the condition’s logical predicates.

Process integration
- Specialized test tools are needed to implement this measure
successfully.
- Can be applied for each unique test sequence, such as
component, integration, system, and regression test, including
“dry-runs.”
- Tests are performed at the unit level using design or architecture
information.

Usually applied during
- Unit Test (Estimates and Actuals).
- Integration and Test (Estimates and Actuals).
- Operations and Maintenance (Actuals).

Typical data items
- For each unit in each CSCI, collect—
(1) Measured attribute (path or decision point).
(2) Total number of attribute occurrences.
(3) Number of occurrences executed at least once.
(4) Number of occurrences successfully executed at least once.

Typical attributes
- Software increment or release.
- Test sequence.
- Test environment.
- Test configuration.

Typical aggregation structure
- Software component.
- Software increment or release.

Typically collected for each
- Configuration item (CI).

Count actuals based on
- Successful completion of each test case in the appropriate test se-
quence.

(b) Management information.

— The depth of testing metric provides information on the integrity of the software design, including the relationship
between the paths, statements, inputs, and decision points of the software.

— The depth measures discussed here do not assess the “correctness” of design or code. It is expected that unit tests
and unit integration and testing will make use of test cases that demonstrate code is designed properly. These cases
should be supplemented by other cases to yield coverage and success measure that provides satisfactory confidence
that unexpected control or data conditions will not occur. Software test programs usually require that software
structure be successfully demonstrated only after passing some “realistic” number of test cases, under both
representative and maximum stress loads. It is understood that fully exhaustive testing of all control and data

262 DA PAM 73–1 • 30 May 2003

combinations is prohibitive.
— Because illegal inputs are used, the domain measure provides an indication of the robustness of the software design.
— Some judgment is required to interpret the domain measure because it is unlikely that the program will be subjected

to all possible input streams. However, the domain measure is important because most faults appear at domain
boundaries.

(c) Indicators.

— The attributes counts collected can be used to measure test coverage (the number of attribute occurrences tested and
total number of occurrences of the attributes), and test success (number of attribute occurrences passed and total
number of occurrences of the attributes).

— Figure Q–13 is a line graph of the number of successfully tested requirements. The graph reveals that testing is
proceeding close to plan, with almost 80 percent of requirements tested to date.

— Figure Q–14 graphs the same components completing the next development activity, which is testing. Three
progress measures are compared: 1) the original plans for component test completion, 2) components for which
tests have been attempted, and 3) components that have passed testing. Figure Q–14 indicates that not as many
components have been tested as originally planned, and not all of the components that were tested passed. In fact, a
large number of tests failed.

(9) Fault profiles metric.
(a) Army metric information. The fault profiles metric in table Q–16 shows a summary of software problem/change

report (PCR) data collected by the corrective action system. This metric provides insight into the number and type of
deficiencies in the current software baseline, as well as the developer’s ability to fix known faults. It answers questions
such as—

— What faults have been reported?
— Have configuration managers approved the fault report?
— Are the fault reports being closed at a sufficient rate to meet the test completion date?
— Is the product maturing, that is, is the fault report discovery rate going down?
— When will testing be complete?
— What components have the most open fault reports?

Figure Q–13. Progress

263DA PAM 73–1 • 30 May 2003

Figure Q–14. Components successfully tested

Table Q–16
Software Metric—Fault Profiles and Common Issue—Schedule and Progress

Selection guidance Specification guidance

Project application
- Collection begins early in the software life cycle when the first
software product, usually a requirements definition document, has
been approved and placed under configuration control.
- Continue to collect fault profiles data for the life of the program.
- A corrective action system is the source of problem/change
report, or fault, information for this metric.
- In order to compute the age of faults, individual faults need to be
tracked by the corrective action system, with the dates of problem
start and problem closure recorded.

Process integration
- Requires a disciplined fault tracking process, including training of
users, operators, and testers. Easier to collect if an automated
system is used.

Typical data items
- Cumulative number of faults detected.
- Cumulative number of faults closed.
- Average age of open faults.
- Average age of closed faults, which is the same as average time
to close.
- Average age of all faults.

Typical attributes
- Software increment or release.
- Fault priority.
- Fault report status (open, closed).
- Category (requirement, documentation, design, software, or other).
- Phase of occurrence.
- Valid/Invalid PCR.

Typical aggregation structure
- Component.

Typically collected for each
- CI or equivalent.
- Test logs or operational incident reports.
- The causes of faults may be reported, such as requirements
specification problems, component design, operator error, or
documentation errors.
- Some projects specify defect or reliability threshold limits, such as
an acceptable number of PCRs or operational faults over time.
- Operating time to fault may be based on component operating time
or clock time.

264 DA PAM 73–1 • 30 May 2003

Table Q–16
Software Metric—Fault Profiles and Common Issue—Schedule and Progress—Continued

Selection guidance Specification guidance

Usually applied during
- Requirements Analysis (Estimates).
- Design (Estimates and Actuals).
- Implementation (Estimates and Actuals).
- Integration and Test (Estimates and Actuals).
- Operations and Maintenance (Actuals).

Count actuals based on
- Fault report recorded.
- Fault report approved by configuration managers.

(b) Management information.

— Fault counts should be based on all tests and evaluations on a formal baseline, which is under configuration control.
Results of informal test-fix-test performed at the unit level should not be counted.

— The gap between open and closed faults should be closely monitored. A constant gap or a continuing divergence is
reason for the user representative to take appropriate action, especially when approaching a key test or milestone.

— Inadequate problem resolution by the developer can cause the cumulative number of closed faults to remain
constant over time, and a number of faults will remain open. The age of the open faults should be checked to see if
they have been open for an unreasonable period of time. Those faults, which are not resolved, represent an
increased risk. Managers should identify the reason that faults are not closed and take corrective action.

— Managers should be aware of the cumulative effect of a large number of low priority faults. Too many minor
problems may impair overall system operation or successful test conduct. PMs may wish to establish thresholds to
limit the cumulative effects of unresolved priority 3 and lower faults on cost or ability to operate the system
effectively.

— The PM should establish a clear description of when a fault is considered discovered and closed. Criteria for the
date discovered might be the date on which the original problem report was written, or when the report was entered
into the corrective action system. Criteria for the date closed should reflect the CCB’s judgment that regression
testing was adequate and applicable documentation is updated. Differences in defining corrective action event dates
can significantly influence the average ages reported via this metric.

— Average age graphs can track whether the time to close faults is increasing over time. Increasing time to close
faults may indicate that the developer is not allocating adequate resources to correcting problems, or that some
faults are exceedingly difficult to fix.

— Large deviations of individual faults from the average age of all faults should be investigated. The average open
age of high-priority faults should also be examined with respect to the time remaining to the next major test or
milestone.

— Examining the categories of software faults can provide insight into the underlying problems. During the early
stages of software development, the fault profiles metric reports the quality of translating software requirements
into the design. Design faults suggest that requirements were not defined correctly, or that the developer is
misunderstanding them. Later, the fault profiles metric measures the implementation of requirements and design
into code, assuming an adequate level of testing is performed. Code faults could result from an inadequate design,
or a poor job of implementing the design into code. Examining the fault categories to determine causal relationships
should be performed in any analysis of fault profiles. Be aware that a single fault may be assigned to one or more
categories.

— The PM should understand any fault or “bug” tracking tools used by the developer for tracking fault profiles data.
The developer’s system for collecting problem reports should be reviewed early in the program to determine how
much of a difference there is between the recommended data definitions above and the definitions used by the tool.

— The PM should establish criteria to determine when a fix must be validated and by whom (Government or
developer SQA).

— The PM should examine the following issues, which are not reported in the fault profiles data—
(1) Time/cost of correction. The cost and time to correct a fault is not directly linked with the fault’s priority.

Priority 1 faults may be caused by trivial errors in syntax, while priority 4 faults may require a redesign.
(2) Problem description/prioritization is not always obvious. For example, a single character error in a source

statement which leads to an improperly executed function. Interpretations of problem and priority may be different
depending on whether the cause or effect is emphasized. The method for determining fault categories and defining
fault priorities is not as important as applying the definitions consistently.

(3) Category of fault. Faults in requirements are often the most expensive and persist the longest. These faults
may not be detected until the software is used on site. Design faults could be related to processing or control flow.
If these faults persist past unit-level testing, check inputs tested as reported in the breadth of testing metric. Control

265DA PAM 73–1 • 30 May 2003

and sequence faults in code may include missing paths, unreadable code, loop termination criteria incorrect,
uncontrolled GOTOs, and spaghetti code (old COBOL). These faults are often caught with path testing. If many of
these types of faults persist beyond unit testing, check the depth of testing metric for completeness.

— The fault profiles displays do not identify which individual faults persist over time. The developer’s corrective
action system may identify the software unit related to a fault to indicate product status. With unit identifiers, it
may be possible to identify problem units and combine analysis with other metrics for a more complete diagnosis.

— When interpreting fault profiles data, be aware that error detection is closely tied to the quality of the development
and testing process. A low number of detected faults could indicate either good process management with good
products, or a process with an inadequate amount or improper type of testing. Fault profiles metric data should not
be evaluated without also considering measures of test coverage. For example, a plot of code category faults could
be evaluated against the amount of testing which was done in each month. The relationship of code faults to test
coverage can be used to gauge the maturity of software and the adequacy of the test program.

— Reliability models can be used to forecast the rate additional faults will be discovered based on previous error
detection history.

(c) Indicators.

— A line chart (see fig Q–15) shows both the cumulative number of problem (fault) reports and the number of fault
reports closed to date. The difference represents the total number of problem reports that are still open. Figure
Q–15 indicates that a large number of new faults have been discovered over the past year. However, in the past
several months, the reporting rate has tapered off. While the closure rate has not kept pace with the reporting rate,
the number of open fault reports is shrinking, as faults are steadily being closed, and fewer new ones are being
reported.

— To learn more about the remaining open problem (fault) reports, additional analyses were performed. The bar chart
in figure Q–16 includes all open fault reports divided into categories by age. This was done by calculating the
number of days elapsed since the fault was reported and grouping the fault reports by age. Figure Q–16 shows an
average open age of 5.7 weeks. This average is below the desired maximum of 8 weeks. The maximum age of
faults is determined by considering the length of the project, the project’s current status, delivery requirements, and
the type and severity of defects discovered.

Figure Q–15. Fault status

266 DA PAM 73–1 • 30 May 2003

Figure Q–16. Fault aging

(10) Reliability metric.
(a) Army metric information. The reliability metric shown in table Q–17 measures the ability of software to perform

as intended. The software contribution to system mission reliability is measured by the number of system failures
caused by software and the time it takes to restore the system to its previous operating condition. Another measure can
be used to track defect data obtained from PCRs during software development and use analytic models to predict
operational reliability. Using data from the fault profiles metric and test history can project future failures as a function
of test time (such as time to next failure or failure rate) and to project the number of latent, or as yet unobserved, faults
remaining in a software baseline. These projections can be used to gauge how much testing is required for confidence
that critical faults will be within acceptable limits when the software is fielded. This metric answers questions such
as—

— What is the system’s operational reliability?
— Is the system ready for operation?
— How often (and how severely) will the system/component fail during operation of the system?
— Will the system, component, or function be available for use when it is needed?

(b) Management information.

— Fault counts should be based on all tests and evaluations on a formal baseline, which is under configuration control.
Results of informal test-fix-test performed at the unit level should not be counted.

— The gap between open and closed faults should be closely monitored. A constant gap or a continuing divergence is
reason for the user representative to take appropriate action, especially when approaching a key test or milestone.

— Inadequate problem resolution by the developer can cause the cumulative number of closed faults to remain
constant over time, and a number of faults will remain open. The age of the open faults should be checked to see if
they have been open for an unreasonable period of time. Those faults, which are not resolved, represent an
increased risk. Managers should identify the reason that faults are not closed and take corrective action.

— Managers should be aware of the cumulative effect of a large number of low priority faults. Too many minor
problems may impair overall system operation or successful test conduct. PMs may wish to establish thresholds to
limit the cumulative effects of unresolved priority 3 and lower faults on cost or ability to operate the system
effectively.

267DA PAM 73–1 • 30 May 2003

— Managers should establish a clear description of when a fault is considered discovered and closed. Criteria for the
date discovered might be the date on which the original problem report was written, or when the report was entered
into the corrective action system. Criteria for the date closed should reflect the CCB’s judgment that regression
testing was adequate and applicable documentation is updated. Differences in defining corrective action event dates
can significantly influence the average ages reported via this metric.

— Average age graphs can track whether the time to close faults is increasing over time. Increasing time to close
faults may indicate that the developer is not allocating adequate resources to correcting problems, or that some
faults are exceedingly difficult to fix.

— Large deviations of individual faults from the average age of all faults should be investigated. The average open
age of high-priority faults should also be examined with respect to the time remaining to the next major test or
milestone.

— Reliability models can be used to forecast the rate additional faults will be discovered based on previous error
detection history.

Table Q–17
Software Metric—Reliability Common Issue—Product Quality

Selection guidance Specification guidance

Project application
- Collect measures of system failures caused by software during
formal system-level tests and continue through PDSS.
- Collect reliability data only under typical system operating
conditions.
- Deriving a predicted software failure rate and estimating latent
software faults requires an appropriate software reliability model.

Process integration
- Requires a disciplined failure tracking process, including training
of users, operators, and testers.
- It may be useful to categorize failure causes, including failures
caused by requirements specification problems, component
design, operator error, or documentation errors.
- Some projects specify reliability threshold limits, such as an
acceptable number of failures over time.
- The test environment must be representative of the operational
environment and time to failure is based on system operating time.

Usually applied during
- Design (Estimates).
- Implementation (Estimates).
- Integration and Test (Estimates).
- Operations and Maintenance (Actuals).

Typical data items
- Test identification.
- Achieved mean-time-between-failure (MTBF).
- Mean, median, and maximum 95th percentile mean time to restore
system to operational status.
- Software reliability model used and test identification.

Typical attributes
- Failure identifier.
- Type of failure.
- Severity of failure effect.
- Root cause of failure.
- Phase of occurrence.
- Corrective and preventive actions required.
- Test sequence.

Typical aggregation structure
- Software component.
- Software increment or release.

Typically collected for each
- Function.
- CI or equivalent.

Count actuals based on
- Failure documented.
- Failure validated.
- Failure resolved.

(c) Indicators.

— The MTBF indicator is often used to provide insight into system or software failure trends. This indicator shows
the average time from one failure to the next, in operations or test. MTBF is often a system performance
requirement, tracked as a technical performance measure.

— After the desired MTBF requirement is established, it should be checked for feasibility against the system or
software application and tracked to monitor performance against plan.

— During planning and requirements analysis, assess the feasibility of meeting stated reliability requirements. Com-
pare reliability requirements against historical performance data from similar systems. If the requirements are too
stringent for the system type, it may be difficult to achieve the required MTBF, or it may not be a cost-effective
design. However, if the requirement is lower than the range historically achieved, then operational performance
may be in jeopardy.

— Figure Q–17 graphs ranges of historical data for each system application, to help build reliability plans and to
perform an MTBF feasibility analysis.

— Figure Q–18 is an example of a reliability growth plan and the tracking of actual MTBF performance against the
plan. In this example, the project was performing well against the plan during the first 2 months. However, the

268 DA PAM 73–1 • 30 May 2003

trend changed in March as reliability growth fell below the target value. A single month’s performance was not
enough to initiate major actions beyond understanding the causes of the change. When the variance from plan
increased in April, the project identified the root causes of the problem and took corrective actions to improve
performance. This intermediate tracking of MTBF helped to identify the growing risk of not meeting the required
MTBF and to determine whether the corrective actions were working.

Figure Q–17. MTBF ranges

Figure Q–18. Reliability growth

269DA PAM 73–1 • 30 May 2003

(11) Manpower metric.
(a) Army metric information. The manpower metric shown in table Q–18 provides an indication of the developer’s

human-resource capability and ability to provide sufficient staffing to complete the project within the allotted the time
and budget. The example manpower metric can be measured at two levels. A basic measure reports total labor hours
planned and expended. A more detailed measure describes the number of personnel in various levels of qualifications
and experience. This metric answers questions such as—

— Are labor hours being applied according to plan?
— Are certain tasks or activities taking more or less effort than expected?
— Are sufficient experienced personnel available?
— How many people have been added or have left the project?
— What is the impact of personnel turnover rates?

Table Q–18
Software Metric—Manpower Common Issue—Schedule and Progress

Selection guidance Specification guidance

Project application
- This metric is applicable to all software development and
maintenance projects and can be tracked for entire software life
cycle.

Process integration
- Data are usually derived from the labor and financial accounting
and reporting systems.
- This metric should report all labor hours, including overtime, even
if it is not compensated.
- This measure is most effective when financial accounting and
reporting systems are directly tied to individual products and
activities at a WBS element level.
- Counting personnel may be difficult if they are not allocated to
the project on a full-time basis or if they are assigned to more than
one WBS element.

Typical data items
- Labor category.
- Experience level.
- Planned and actual number of labor hours expended in the
reporting period.
- Planned and actual number of personnel in a specific experience
level for the reporting period.
- Number of unplanned losses of personnel.

Typical attributes
- Organization.
- Labor category.
- Education level.
- Experience factor.

Typical aggregation structure
- Project.
- Organizational component.

Typically collected for each
- Project.
- If labor hours are considered proprietary data and are not explicitly
reported, data may be approximated from staffing and/or cost data.
- Manpower planning data are usually based on estimation models,
historical data, or engineering judgment.
- Detailed data reporting requires a personnel database that in-
cludes experience and training data.
- Detailed experience levels may be based on education, software
language, system domain, or length of time together as a team.
- Planned and unplanned personnel losses may be reported.

Usually applied during
- Project Planning (Estimates) and all other phases (Estimates and
Actuals).
- WBS Component.

Count actuals based on
- Financial or labor reports.

(b) Management information.

— Software staff includes those engineering and management personnel directly involved with any software activity.
— Losses and gains for each labor category should be tracked to indicate potential problem areas. High turnover of

key and experienced personnel can adversely affect project success. Adding many unplanned personnel late in the
development process may indicate impending problems.

— Significant deviations from planned staffing levels may indicate problems in the developer’s management proce-
dures or problems in product quality that require additional effort to repair.

— The shape of the staffing profile curve tends to start at a moderate level at the beginning of a project, grow through

270 DA PAM 73–1 • 30 May 2003

design, peak at implementation and testing and diminish near the completion of integration testing. Individual labor
categories, however, are likely to peak at different points in the life cycle. Any significant deviation between actual
and planned values should be investigated to determine the cause. During PDSS, staffing is usually constant.

— The manpower metric is used primarily for project management and may not necessarily have a direct relationship
with other technical and maturity metrics. For example, growth in number of personnel is not necessarily reflected
by an increase in product quality.

(c) Indicators.

— In figure Q–19, the latest plan (plan 2) is compared to the original plan (plan 1) and to the actual effort expended to
date. While plan 2 appears more realistic (because it is more consistent with actual effort allocation to date), the
acceptability of extending the schedule by several months must be determined. Also consider whether the new plan
calls for additional effort overall. In this example, total effort has not increased; otherwise, the impact on project
costs and the availability of additional resources should be considered.

— Figure Q–20 tracks effort on a maintenance project with a fixed staffing level (level-of-effort project). While the
fixed staffing level was incorporated into project plans, actual effort expended to date did not achieve this level. In
March and April, several members of the project were loaned to another project. In May, some new persons were
assigned to maintenance as a training opportunity. Due to summer vacations, less time was spent in July than
planned.

— Figure Q–21 shows that the supplier started the project with a staff average of 3.4 years of real-time distributed
systems experience. To further investigate recent schedule slippage and low productivity, updated staff experience
data was requested. The new data reveal that, while staff size has remained constant (in spite of turnover), the
experience levels of replacement staff have dropped. The average experience is now only 2.4 years.

Figure Q–19. Level of effort (plans vs actual)

271DA PAM 73–1 • 30 May 2003

Figure Q–20. Staffing level planned vs actual

Figure Q–21. Staff experience

(12) Development progress metric.
(a) Army metric information. The development progress metric shown in table Q–19 measures the completeness of

the software development or maintenance effort, based on the number of planned units of labor or product that are
completed on a schedule. This metric answers questions such as—

— Are components completing development activities as scheduled?
— Is the planned rate of work activity realistic?
— What components or work activities are behind schedule?

272 DA PAM 73–1 • 30 May 2003

Table Q–19
Software Metric—Development Progress Common Issue—Schedule and Progress

Selection guidance Specification guidance

Project application
- Data can be reported for this metric if the project has a
disciplined process that can identify specific units of labor or prod-
ucts that are to be completed on a defined schedule.

Process integration
- Work units may include formal reviews, inspections, or walk-
throughs in a development process.
- Data are usually available from the configuration management or
schedule processes.
- Specific criteria must be established to define completion of a
unit.

Usually applied during
- Begin collecting estimates during project planning and continue
reporting estimates and actuals through Operations and
Maintenance.

Typical data items
- Number of software units in a software increment or release.
- Planned and actual number of units completed.

Typical attributes
- Software increment or release.
- Type of activity or process.

Typical aggregation structure
- Software increment or release.

Typically collected for each
- CI or equivalent.
- Software increment or release.

Count actuals based on
- Successful completion of a work phase.
- Approval of a unit by configuration management.

(b) Management information.

— Units of labor or products may be defined for all phase of software development and maintenance; including
requirements definition, software design, code implementation and unit test, unit integration and test, and planned
maintenance updates.

— Examining the planned versus actual number of units completed may indicate potential problems with schedule and
cost.

— The number of units completed may not indicate product quality and rework that may be required.
— Other example metrics related to development progress are Cost, Schedule, CRU, Requirements Traceability,

Requirements Stability, and Complexity

(c) Indicators. Figure Q–22, design progress, is graphed with a line chart depicting cumulative measures for the
original plan (plan 1), the current plan (plan 2), and the actual components designed to date. Each point is calculated by
adding the number of components allocated for the reporting period to the corresponding cumulative total from the last
reporting period. The figure shows that design progress was behind the original plan at the end of August 1999,
resulting in a new plan of the overall activity. Actual design progress has remained fairly close to the new plan (plan
2). The plan line, however, requires a significant increase in the completion rate over the next few months, raising
concern about the feasibility of the plan.

(13) Schedule metric.
(a) Army metric information. The schedule metric shown in table Q–20 reports the planned and actual dates for

completion of activities and products. Comparison of plans and actual completion of tasks indicated the level of risk in
achieving future project goals. This metric answers questions such as—

— Is the current schedule realistic?
— How many activities are concurrently scheduled?
— How often has the schedule changed?
— What is the projected completion date for the project?
— What activities, events, or products are on time, ahead of schedule, or behind schedule?
— Will the target budget be achieved or will there be an overrun or surplus?

273DA PAM 73–1 • 30 May 2003

Figure Q–22. Design progress

Table Q–20
Software Metric—Schedule Common Issue—Schedule and Progress

Selection guidance Specification guidance

Project application
- Schedule data are reported in almost every Government and
industry project.

Process integration
- The ability of a project to stay on schedule is determined by the
quality of the process to estimate and plan the original schedule.
- Schedule data should be focused on major activities that will
affect the critical path performance or high-risk activities.
- If schedule dependency data are collected, slips in related
activities can be projected and monitored.
- If activities or events are re-planned to occur at a different time,
the original dates should be retained in the schedule reports to
indicate areas of risk.

Typical data items
- Planned start date of activity or event.
- Actual start date of activity or event.
- Planned end date of activity or event.
- Actual end date of activity or event.

Typical attributes
- Activity.
- Project.
- Version, Activity or event.
- Product.
- Version of the plan.
- Software increment or release.
- Organization.

Typical aggregation structure
- Component.
- Activity.
- Project.

Typically collected for each
- Activity. Some software maintenance projects are considered
level-of-effort tasks and may not have detailed milestones; reporting
only the dates of increment releases and change request closure.

Usually applied during
- Begin schedule estimating during project planning and continue
reporting estimates and actuals through Operations and
Maintenance.
- Project or WBS element.
- CI or equivalent.
- Key activity.

Count actuals based on
- Successful completion of tasks.
- Customer sign-off.
- Project element complete (to defined exit criteria).
- Product delivery.

274 DA PAM 73–1 • 30 May 2003

(b) Management information.

— During project planning and replanning, schedules should be analyzed to determine if any important activities or
events are missing, if overlap between activities is feasible, and if dates and activity durations are reasonable, based
on other project assumptions of the cost, staffing, and task difficulty.

— When the schedule plan is changed, schedule slippage over time should be made apparent by retaining and
reporting each successive plan in the schedule indicator.

(c) Indicators.

— In figure Q–23, Implementation ends slightly earlier in plan 4 than in plan 3, but Integration and Test finishes more
than 1 month later in plan 4 than in plan 3. Given the extent of slippage that has already occurred on the project,
the feasibility of meeting this new milestone must be evaluated. Throughout a project’s life cycle, a Gantt chart
may be used to help identify the current status of major project events and to assess the impact of actual schedule
slips on future activities and milestones.

— In figure Q–24, planned and actual start and end dates show the status of the last four maintenance releases. The
first three releases were completed, while release 4 is still in progress. Both releases 1 and 2 were completed late,
and release 4 is also projected with a late completion. For maintenance releases, late requirements changes often
impact schedule and should be investigated.

Figure Q–23. Development milestone schedule

(14) Computer Resource Utilization (CRU) metric.
(a) Army metric information. The Computer Resource Utilization (CRU) metric shown in table Q–21 measures the

planned and actual capacity of a component resource that is used during system operation. Component resources that
are commonly monitored are computer processor utilization, Input/Output capacity, memory, and storage space use.
The metric indicates whether the hardware capacity can support the software and system operational requirements. This
metric answers questions such as—

— Can additional data traffic be accommodated after system delivery?
— Do estimates for the resource appear reasonable? Have large increases occurred?
— Does hardware design have the reserve capacity to ensure software operation for all system functions?

275DA PAM 73–1 • 30 May 2003

Figure Q–24. Milestone progress

Table Q–21
Software Metric—Computer Resource Utilization Common Issue—Product Quality

Selection guidance Specification guidance

Project application
- Critical for safety and high-reliability applications.
- An important metric for resource-constrained systems.

Process integration
- The system must have a well-defined operational profile to allow
accurate estimates of capacity utilization.
- CRU estimates are difficult to derive and require significant
simulation or modeling support. Estimates must be developed
early to impact design decisions.
- Actual measurement of computer resource utilization cannot
happen until late in software development when operational soft-
ware and realistic equipment are available.
- CRU estimates should be based on the worst-case loading or
stress that may occur in the defined operational profile.

Typical data items
- Planned computer processor utilization.
- Actual computer processor utilization and the measured impact on
throughput and timing.
- Planned and actual utilization of any measures resource (memory,
storage, I/O, and network utilization).

Typical attributes
- Software increment or release.
- Operational profile.
- Hardware version.
- Activity.
- Project.

Typical aggregation structure
- Software increment or release.
- Hardware component.

Typically collected for each
- Activity.
- Project or WBS element.
- CI or equivalent.
- System resources may be insufficient even though individual
component resources are adequate.

Usually applied during
- Project Planning (Estimates).
- Requirements Analysis (Estimates).
- Design (Estimates).
- Implementation (Estimates).
- Integration and Test (Estimates and Actuals).
- Operations and Maintenance (Estimates and Actuals).
- Software increment or release.

Count actuals based on
- Integrated system test.
- Operational test and field reports.
- Project element complete (to defined exit criteria).
- Product delivery.

276 DA PAM 73–1 • 30 May 2003

(b) Management information.

— A recommended CRU reporting frequency does not exist and should be determined by the criticality of reserve
capacity for a computer resource.

— Resource capacity monitors are often designed as a part of the regular operating system functions.
— Resource capacity estimation is difficult for hardware designs that employ dynamic allocation, virtual memory,

parallel processing, multitasking, or multi-user features.
— CRU can also be used to determine whether sufficient capacity exists to support operations under conditions of

high usage or stress or if new functionality can be supported.

(c) Indicators.

— Figure Q–25 shows the CPU utilization of the system, measured against the contract requirement for a 50 percent
reserve. This is based on a peak measurement. (Both reliability and CPU utilization are based on a user-defined
operational scenario.) This figure indicates that tests show current utilization levels slightly above the 50 percent
threshold.

— A comparative evaluation of these four indicators reveals that the project is making steady progress in completing
testing activities; that no large unplanned activities exist (as a result of rework); and that critical performance
measures will probably be met. As a result, the team may proceed with plans to deliver the system as scheduled.

— The remaining open problem reports should be reviewed to ensure that deferment of those problems will not
adversely affect usability or key customer requirements. Any high-priority problems should be corrected prior to
delivery.

— Reducing the CPU utilization would probably require additional changes to some components that have otherwise
been certified as working properly. This rework decision could delay delivery. The PM and customer may decide to
make a tradeoff by accepting a system that exceeds the desired threshold to allow on-time delivery. A future
enhancement might address the threshold problem.

Figure Q–25. CPU utilization

277DA PAM 73–1 • 30 May 2003

Section VII
Risk Assessment

Q–50. Risk and T&E
a. T&E is expensive, carrying up to 50 percent of the development budget for large-scale systems, especially when

they are software intensive systems. T&E events that cannot be completed due to inadequate preparation, safety
hazards, or test failures may need to be repeated, wasting money and jeopardizing a program’s chances of success. This
appendix describes a structured method of evaluating risk associated with an upcoming T&E event. Assessing and
mitigating risk is an important task for both the tester and the evaluator.

b. Risk is generally defined as exposure to potential adverse effects. In order to make an objective decision
concerning T&E risk, it’s necessary to—

(1) Identify the T&E event objectives.
(2) Identify risks that inhibit achieving these objectives.
(3) Assess the probability of each risk.
(4) Assess the impact or severity of each risk.
(5) Determine the overall risk to achieving the objectives of the T&E event.
c. Risks to a T&E event are not limited to items directly comprising the system under test, but also to the

encompassing T&E environment and resources, including personnel. All the topics addressed in a Test Readiness
Review are candidates for risk assessment. A risk assessment may also be tailored to focus on specific areas of concern
or complexity, such as software, to address the risk of potential failures in a particular domain.

d. The intent of the risk assessment is to assist in determining the jeopardy to an upcoming T&E event, usually not
more than 6 months away, due to problems with the system under test or the test preparation process. In particular, the
risk assessment will determine if there is a significant likelihood that there are problems in one or more areas. For
instance, the risk could—

(1) Prevent completion of the event or make it impossible to answer key T&E issues. This could be the result of the
lack of capability, or the inability to complete an event, which is necessary to make the evaluation.

(2) Cause incidents that result in significant harm to personnel or damage to equipment.
(3) Cause the system to be found to be ineffective, unsuitable, or not survivable. However, the risk assessment is not

intended to be a pre-assessment of the system’s effectiveness and suitability, per se.
e. The T&E events referred to here are often tests. This risk assessment process can also be applied to other

appropriate events used in the system evaluation.

Q–51. Risk management
Dealing with risk consists of four basic steps as shown in figure Q–26. The process is iterative and knowledge gained
in each application of the process refines the information derived in each step.

Figure Q–26. Basic risk management process

278 DA PAM 73–1 • 30 May 2003

a. Identify potential risks based on rough estimates of consequence (that is, its adverse affect and its probability of
occurrence). At first, risks may be vague and general in nature, and may concern either a process or a product.

b. Analyze each potential risk to more closely define its precipitating event or situation, the likelihood of occurrence
of that event, and the consequence in terms of cost, schedule and/or performance. Rank the risks to identify those that
must be dealt with in order to succeed. Integrate the risks to identify the major sub-system and system level risks, with
special emphasis on integration risks between hardware, software, personnel, and environment elements. The output of
this step is an initial risk list.

c. Mitigate the identified risks where possible by identifying mitigation alternatives. Determine the cost and benefits
of each alternative in terms of reducing its consequence or reducing its probability of occurrence. Risk mitigation
usually involves trading cost, schedule, or performance to reduce the risk. Determine the best set of mitigation
alternatives that are affordable and produce the greatest risk reduction for the cost. The output of this step is a list of
mitigation alternatives with costs (that is, in terms of cost, schedule, and performance) and benefits (that is, in terms of
reduced risk).

d. Manage the remaining risks by selecting and executing risk mitigation strategies (which could include postponing
the T&E event), monitoring remaining risks to validate the correctness of the risk assessment, and continuing to assess
the program to identify any new risks that appear.

e. Risk assessment for an upcoming T&E event is a special case of the general risk management process. Although
the focus is on identifying and analyzing risk, all of the steps of the risk management process will occur. The T&E
event risk assessment process, to include one or more Test Readiness Reviews, should be considered as a part of an on-
going risk management operation whose purpose is to give the upcoming T&E event the greatest chance of success. A
more detailed view of the risk assessment process is depicted in figure Q–27.

Figure Q–27. T&E risk process methodology

279DA PAM 73–1 • 30 May 2003

Q–52. Risk identification
It is impractical to define and analyze every possible risk for any significant activity. The key is to focus on the key
risks, which have a significant chance of affecting the T&E event. This is accomplished by first identifying a large
group of possible risks which are then narrowed to key risks through further analysis. The risks to a T&E event fall
into two major categories: risks in the system under test and risks in the testing environment. In general, define one or
more organizing structures that list and organize all elements of the program, and then apply one or more risk
identification techniques to each element in order to establish potential risks.

a. Define the risk identification structure. Organizing structures are arrangements of some aspect of the system
under evaluation that serve to break the system into assessable elements, ensure complete coverage, and guard against
double counting of risk. Possible organizing structures include the following:

(1) System functional structure. Examples are a system functional description, requirements list, or User’s Func-
tional Description (UFD). These are used for identifying and ranking mission related consequences.

(2) Work Breakdown Structure (WBS). Used for systems that are principally hardware, with software functionality
that extends across multiple components. A WBS organization also helps evaluate integration risks, particularly
between hardware and software components.

(3) Software component structure. Used for systems that are principally software, and whose functionality princi-
pally concerns manipulating data and information. An example is a breakdown of Computer Software Configuration
Items (CSCIs) into Computer Software Units (CSCI/CSU).

(4) Test event tree and schedule. Used for identifying safety or implementation related risks to a specific T&E
event. The dependencies among events must be known.

b. If more than one assessment structure is used (for example, the software component structure or the system
functional structure), it should be possible to map from one to the other. For example, if a particular CSCI is assigned a
high risk rating due to uncertainty concerning its development, it should be possible to map back to the associated
functionality within the system functional description to determine the potential mission impact. The requirements
management process should allow the probability of success for a software element to be associated with the
consequences of failure for a set of associated operational functions.

c. If only one structure is used, be sure that both high probability and high consequence concerns within that
structure can be identified. While a number of structures may be used for a risk assessment, the final risk organization
and presentation should use only one.

d. Risk identification techniques are used to make the initial determination of risks for further analysis. Generally,
one or more techniques can be applied to each element of the organizing structure. Integrate the results from these
assessments to resolve conflicts, resulting in a list of risks. Rank the list to support culling, if necessary, to produce the
list of risks for further analysis.

(1) Open Fault List. All unresolved problems: system, software, training, and prior test incident reports should be
included in the potential risk list for further analysis to quantify the potential impact and the probability of occurrence.

(2) Operational Profile Review. Prior test results are a principal source supporting risk assessment for an upcoming
T&E event. The test results depict the success of the system in meeting developmental test objectives to date.
However, if the upcoming T&E event is an operational test, the usefulness of prior test data depends on the degree to
which the developmental test circumstances mirror the operational environments and inputs that will be faced during
the operational test. If the operational environment is incorrectly or incompletely represented in developmental testing,
the DT test results will not provide an indicator of OT success. In addition, operational situations that are either
missing or under-represented in the operational profile may mean that there is uncertainty as to the ability of the
system to operate in those situations. These operational situations should be placed on the list of potential risks for
further analysis.

(3) T&E Event Tree. Plans for the T&E event itself, such as the System Evaluation Plan (SEP) and Event Design
Plan (EDP) can be an effective structure for identifying high consequence risks. The T&E event can be displayed as an
event tree using the same format as a Work Breakdown Structure (WBS). Divide the T&E event into separate activities
representing the evaluation requirements from the SEP. Further divide the separate activities into the events that must
occur to support that activity. Continue to develop to a level low enough to allow assessment of potential failure modes
and consequences of failure. Associate relevant testing environment items, such as instrumentation, facilities, support
equipment and support personnel, and test player training and availability to the test events including the timing of
events per the testing schedule. Risks in the adequacy of the test program to provide for the proper collection of
sufficient and valid data for the evaluator to perform a credible, timely analysis and evaluation, and risks to the
availability of test resources or pre-test training should be included on the initial risk list for further analysis. Also
associate the system or software functions that occur during the activity with each event. Risks that are possible and

280 DA PAM 73–1 • 30 May 2003

have a high consequence (for example, risks that involve KPP and COIC), should be included on the initial risk list as
well.

(4) Function or requirements rankings. One of the quickest and most effective ways to identify risks driven by high
consequence is the function or requirement ranking process. Using a requirement list or Critical Mission Functions in
the UFD, have operational experts rank the system functions relative to importance if they are not achieved. This
ranking is usually based on an assessment of how important that function is to mission accomplishment. With the
assistance of system or software development experts, rank the functions relative to the likelihood that they will be
fully implemented in the system under development. High-risk functions are then mapped back to the system elements
that support them. The associated system elements are placed on the initial risk list unless other risk identification
techniques strongly indicate that they will be successful.

(5) Metrics. Metrics are the parameters and supporting data that measure progress relative to plan for a development
program. The selection and form of the metrics can vary from project to project. It would be unusual, however, for a
program to have no metrics, and an indicator of risk.

(a) Each of the metrics listed in section VI of this appendix support an important element of information that is
normally necessary for effective program management. If there is no apparent metric dedicated to that management
function, determine how the program manager is measuring progress for that aspect of the program. If he or she is not,
associated risk goes up.

(b) The metrics in section VI of this appendix are oriented toward software-intensive systems; however, most of
them are readily adaptable to measure relevant hardware or system characteristics. Section VI also contains definitions
of software metrics and includes a discussion concerning the types of data within each metric and analysis techniques.

(c) Software metrics generally serve to assess the probability of successful completion of software components. The
consequences of risks are determined by identifying the associated functionality of the software components in
question, and assessing the impact should those functions fail.

(d) Trends in defect discovery and closure rates (Fault Profiles) and testing coverage of requirements (Breadth of
Testing) can provide valuable insight to identify areas of software or system risk.

(e) An individual metric, by itself, does not necessarily indicate the likelihood of future faults. Multiple metrics all
pointing toward the same system or software elements, however, clearly indicate a potential risk, which requires
additional analysis.

Q–53. Risk analysis
The objective of risk analysis is to define the potential consequences and probabilities of occurrence of a risk with
enough specificity that they will support decisions concerning mitigation, including the decision to proceed or not
proceed with a test event. Risks may be known or unknown. A known risk is one for which the risk event, the
probability and the consequence can be defined with reasonable confidence. Unknown risks are those for which you
know that there is a significant consequence but are not sure of the probability or those for which you know that there
is a significant uncertainty but are not sure of potential consequences. For example, at the 90 percent confidence level,
reliability projections predict one to two new faults will occur during testing but do not predict where they are likely to
occur. Unlike known risks, work with ranges for the unknown risks, with the size of the range varying in proportion to
the level of uncertainty concerning the risk.

a. Risk analysis techniques are methods to quantify the consequences and probabilities of occurrence of risks.
Individual risks are assessed and then integrated into groups of risks associated with larger aspects of the T&E event.

(1) Failure modes and effects analysis. In some cases, it may be possible to quantify a risk by identifying the
potential failure modes and the effects of failures by these modes. The initial assessment of failure modes is made at
the black box or functional level. Evaluate each function for which a risk has been identified to determine the ways in
which possible input or processing errors might occur. Once failure modes are identified, the consequences of this type
of failure during the T&E event can be quantified, and the likelihood of failure in this limited way can be assessed. For
example, a software function may receive target location information and generate range and direction for a cannon to
fire on that target during a training exercise. Potential failure modes could include no data, generation of incorrect data
but safe data, and generation of incorrect but unsafe data (round lands outside the firing range). Consequence
assessment is straightforward. By evaluating the ways in which these failure modes could occur and linking them back
to the supporting software elements, it may be possible to assess the probability of occurrence of each.

(2) Metrics. Some metrics may be useful for quantifying the probability of occurrence of a particular deficiency, the
likelihood of new faults occurring, or the likelihood existing faults will be resolved in a time to meet a scheduled
event. For example, an informative indicator of progress is to examine the number of faults, or defects, the software
has recently experienced. If there are many unresolved faults or the rate at which problems are being corrected is
slowing down, this could pose a risk that not enough problems will be resolved and tested prior to an evaluation event.
Figure Q–28 illustrates a fault profile. A risk assessment is taking place in February for a T&E event scheduled in
May. The number of defects for System X has grown rapidly in the last few months while corrective action is lagging
behind. Even if no new problems were detected, the present rate of resolution would just barely close them all before
the T&E event. This would seem to pose medium to high risk. As another example, taking a closer look at the

281DA PAM 73–1 • 30 May 2003

currently open software faults (see fig Q–29), however, reveals that the majority of problems are not serious enough to
affect the outcome of the T&E event. Risk due to software faults appears reduced, but not eliminated.

Figure Q–28. Software fault profile metric example

Figure Q–29. Software faults by priority metric example

b. Initial risk identification and analysis activities develop a set of risks for each individual system element at the
lowest level considered. These element risks must be integrated at each higher level of the organizing structure in order
to understand the total impact, and to identify previously unidentified risks associated with element interfaces. This
integration effort requires consideration of the combined risk of several individual risks. Calculating the probabilities of
combinations of multiple events can be extremely complex. There are a few simple rules, however, which can provide
estimates of combined probabilities and guard against gross logic errors.

(1) The likelihood that an event will not occur is one minus the probability it will occur. For example, if an event
has a 25 percent probability of occurrence, there is a 75 percent likelihood that it will not occur.

282 DA PAM 73–1 • 30 May 2003

(2) The probability that a group of independent events will all occur is the product of the probabilities that each will
occur. Example. Three separate events each have a likelihood of 50 percent of occurring. The likelihood that all will
occur is 12.5 percent (0.5 x 0.5 x 0.5 = 0.125).

(3) The probability that none of a group of events will occur is found by multiplying the probabilities that each will
not occur (1 - probability that each will occur).

c. Rule (3) helps guard against common risk integration errors.
(1) There is a tendency to assume that, if each element within a system has a low risk, the system must also be low

risk. For example, assume there is a system with 50 components, each of which has only a 1 percent chance of
experiencing a serious risk. The likelihood that at least one of these risks will occur is approximately 40 percent, which
most would consider to be significant.1

Note. 1. Likelihood that none of these risks will occur = (0.9950) = ~60 percent. Likelihood that at least one will occur is (1 -
likelihood that none will occur) or (1 - .6) = 40 percent.

(2) Risks over an element should not be averaged to determine the risk of the element. Assume, for example, that
you are assessing two system elements. One has two risks, each of which has a likelihood of 25 percent of occurring.
The other has five risks, also with individual probabilities of 25 percent. While the “average” risk probability for each
element is 25 percent, the likelihood of at least one risk occurring in the first element is about 44 percent, while the
risk of at least one risk occurring in the second is more than 75 percent. “Average risk” is not a meaningful measure
for most risk assessment efforts.

d. It may be useful to rank risks in order to focus on those that are most important. Risk ranking should be done
carefully. Risk assessment is often a fairly imprecise process, involving a good degree of subjectivity. Unless the
assessment process supports accurate quantification, it is usually better to rank risks in bands (for example, high and
medium), rather than to make fine distinctions.

(1) Expected value is often used to determine risk ranking. Expected value is the product of probability of an
occurrence times the value of the impact of the occurrence. By itself, however, expected value can hide the actual
probability and consequence values and result in poor decisions. Expected value, or any other single value risk
representation, should not be used without also showing the associated consequence and probability.

(2) Sample definitions of T&E event consequences and probabilities of occurrence are provided in tables Q–22 and
Q–23. Table Q–24 shows a generic expression of expected value for a risk based on these two sets of definitions.

Table Q–22
Severity of risk event occurrence

Severity of a risk event is— When the risk event causes—

Catastrophic Mission failure, loss of system or personnel, or completely prevents collection of data necessary to
resolve T&E issues.

Major Severe mission degradation, personnel injury or system damage, or seriously degrades the quality of
data necessary to resolve T&E issues.

Minor Slight mission degradation, personnel injury or system damage, or slightly degrades the quality of
data necessary to resolve T&E issues.

Negligible Less than minor personnel injury or system damage; no mission or T&E data degradation.

Table Q–23
Likelihood of risk event occurrence

Probability of a risk event occurrence is— When the risk event will—

Very High Occur frequently during the T&E event.

High Occur several times during the event.

Medium Likely to occur at some point during the event.

Low Probably will not occur during the event, but may occur.

283DA PAM 73–1 • 30 May 2003

Table Q–24
Risk levels

Severity

Probability Negligible Minor Major Catastrophic

Low Light Light/Mod Light/Mod Moderate

Medium Light Moderate Mod/Heavy Heavy

High Moderate Mod/Heavy Heavy Heavy/Intensive

Very High Moderate Heavy Heavy/Intensive Intensive

Light: Problem that should not affect T&E event objectives.
Moderate: Some impact on the objectives.
Heavy: Substantial impact on the objectives.
Intensive: T&E event objectives cannot be met.

e. In most risk assessments, it is desirable to group risks that apply to the same system element or function in order
to estimate the total risk. For example, there may be multiple ways in which specific functional failure could occur,
each with its own probability. The risk assessment must determine how likely the functional failure is given all risks in
the group.

(1) The simplest technique is to display the risks as a group. This is appropriate when the risks cannot be
quantitatively defined. The grouping will at least allow a subjective judgment concerning the likelihood of occurrence.

(2) If the probabilities are well defined or within narrow ranges, it may be possible to compute the probability of
occurrence for the combined group mathematically. The new probability, which will be more likely than any of the
individual risks, can then be used to represent the overall probability of functional or element risk occurrence.
Unfortunately, these computations can be very complex if there are a large number of dependent risks in the group.

(3) When probabilities are defined by broad ranges (for example, probability of occurrence somewhere between 20
percent and 50 percent with the most likely value around 30 percent), it may be possible to assess the combined
probability by using a Monte Carlo simulation program. These programs randomly assign values to each risk based on
the defined range and distribution within that range, and then calculate the resulting total risk mathematically. They
perform this operation a very large number of times to generate the range of possible total risk probability values,
along with the likelihood of occurrence for that value (that is, the number of occurrences as a percentage of the total
number of trials). Unlike a straight mathematical computation, this technique handles risk dependencies well as long as
they can be described.

Q–54. Risk mitigation
Once risks to a T&E event are identified, it may be possible to reduce them prior to the T&E event by judiciously
trading cost, schedule, and performance. All T&E event risks should be considered for mitigation alternatives prior to
presenting them for a final management decision. Common risk mitigation techniques are—

a. Assumption. Accept the risk without mitigation. This usually means that there is sufficient risk reserve to
compensate for the consequence if it occurs. However, assumption may mean that the decision-maker is willing to
accept failure if the risk is realized. For a T&E event this usually means that the risk does not seriously endanger test
objectives, schedule, or safety.

b. Avoidance. Remove the risk by reducing performance requirements, increasing schedule (delaying or extending
the test event), or by adding safeguards which make the risk event impossible (for example, physical restrictions on the
range of movement of a cannon tube or using M&S for the system evaluation).

c. Transfer. Move the risk to another program element or organization, usually trading cost, schedule, or perform-
ance in the process. This includes such actions as accepting previously conducted commercial or other service testing
in conjunction with a manufacturer’s warranty or moving the support cost risk to the developer.

d. Control. Accept the risk, but put a management process into place, along with contingency plans, which allows
effective reaction to the risk if the probability of occurrence increases. This includes such controls as exit criteria prior
to and within the test event, and contingency test plans that can be activated if the original plan fails.

e. Research and analysis. Risk is a function of uncertainty. Additional research and analysis can reduce the
uncertainty associated with a risk, for example, gaining a better understanding of the frequency of occurrence of trigger
conditions, and narrowing the range of potential consequences.

f. Risk reserve. Both the system’s PM and responsible T&E organization should maintain an appropriate cost and
schedule management reserve in order to deal with assumed risks and the inevitable surprises associated with any
significant T&E effort. In fact, the lack of management reserve should be listed as a general risk. The decision as to
how much time and money to place in reserve rests primarily with the PM, but it should involve balancing the
consequences of not having the reserve if it is needed against the cost of the risk reserve. The T&E organization’s

284 DA PAM 73–1 • 30 May 2003

management reserve focuses on time and resource contingencies that preserve the ability to adequately conduct and
evaluate the T&E event. Most of the risk reserve should be initially allocated against known assumed risks.

Q–55. Risk assessment results and management decisions
a. The results of the T&E event risk assessment described in this appendix, in most cases, are used to support

management decisions regarding—
(1) Readiness for the T&E event as a whole.
(2) Areas of concern that may require immediate attention.
(3) Executing risk mitigation strategies for areas that are likely to pose risk during the T&E event.
b. Detailed results of a risk assessment are not usually suitable for presentation at a Test Readiness Review, but can

be valuable supporting material in addressing the various topics in the review agenda.
c. The objective of the final summary of risks is to give the decision-maker an understanding of significant risks in

terms of their probabilities and consequences sufficient to support a decision to proceed or not with the T&E event. To
the degree possible, the decision review emphasizes the specific potential impact of the risk on the test event, along
with the probability of that impact occurring. For example, if there is a possibility of losing developmental equipment,
the cost of replacing that equipment should be shown. If there is a possibility of an early failure, which would force
cancellation of the test, the cost and schedule impact of repeating the test should be identified.

d. At a minimum, the risk assessment summary should include the following—
(1) The principal organizing structure used for the analysis: usually the software design or WBS, the functional

description, or a test event breakout, along with a summary assessment of risk for each sub-element of the structure.
(2) An assessment over the organizing structure of the percentage of elements that are subject to significant risk (for

example, the percentage of MOE/MOP or system functions affected).
(3) A ranked listing of each significant risk, with a description of the probability and consequence for each.
(4) A list of general risks (that is, those for which consequence and/or probability could not be defined, along with

an assessment of the possible affect on the T&E event).
(5) A list of possible risk mitigation actions, along with a description of the cost of each action to include schedule

and performance impacts, and a description of expected benefits on the targeted risk.
(6) A recommended course of action with regard to risk mitigation, the decision to proceed or not with the T&E

event, and assigned responsibilities for carrying out risk mitigation actions such as test plan modification, and
monitoring of exit criteria.

e. The risk mitigation step may have resulted in risk control measures, which require management attention. These
may include contingency test plans, which have to be prepared, or exit criteria, which must be monitored to ensure that
the appropriate action is taken in response. Assign responsibility for these control measures, along with appropriate
monitoring to ensure that they are properly implemented.

Section VIII
T&E Planning Process for Post Deployment Software Support (PDSS)

Q–56. PDSS purpose
Post deployment software support (PDSS) refers to modifications or upgrades made to a system’s software following
the system’s FRP DR and initial fielding. This section outlines issues pertinent to PDSS and approaches for addressing
those issues.

Q–57. PDSS scope
a. This section applies to the phases of Production and Deployment, Operations and Support in the system life-cycle

model that is defined in DOD Instruction 5000.2.
b. System modifications and upgrades include multi-system changes, block changes, preplanned product improve-

ments, class I ECPs, and system change packages. In this appendix, the modifications of software and computer
resources, regardless of how the change is implemented, are referred to as a software change package.

c. System changes that are extensive enough to warrant approval as a major modification in a post FRP DR are not
considered PDSS, but a variation of a new program start. The milestone decision authority determines which acquisi-
tion phase the program should enter.

d. The applicability of procedures in this appendix to any given program and the extent to which they are carried out
is dependent on overall system factors, such as deployment philosophy, and the criticality and urgency of a change.

Q–58. PDSS objective
The objective of PDSS is to correct deficiencies. Deficiencies include both problems reported by users or detected
d u r i n g s o f t w a r e m a i n t e n a n c e , a n d m o d i f i c a t i o n s n e e d e d t o i m p r o v e s y s t e m s o f t w a r e t o m e e t n e w o r c h a n g e d
requirements.

285DA PAM 73–1 • 30 May 2003

Q–59. PDSS issues
a. The PDSS environment generally focuses on correcting reported software problems for systems that are deployed

and enhancing the software as system requirements change. The PDSS organization typically collects these changes
into a few formal software releases to avoid disrupting the fielded system. Differences in the amount of change to
software and timing of software releases should be considered in identifying the scope of total T&E required and the
extent of T&E team involvement.

b. Software development activities performed in PDSS are the same as those carried out prior to first fielding. These
activities are tailored to reflect the effort required for implementing each Software Change Proposal (SCP), updating
pertinent documentation, verifying the SCP, and issuing changes to users. The scope of the change and the criticality of
affected software units should be considered in determining the T&E strategy for each SCP.

c. If an SCP does not have operational impact, then the PDSS agent determines the action necessary to support the
decision to field the change. The maintenance PM determines—

(1) The scope of software change in the SCP.
(2) The amount of rework necessary to implement the changes.
(3) The amount of testing needed to ensure that new or modified functions operate properly and that no new errors

have been introduced.
d. Changes that introduce new or revised operational requirements or changes that may have an operational impact

on the system require independent developmental and operational evaluations. Testing must provide the information
needed to evaluate the impact of the change.

e. The urgency of delivering a change to user agencies may have an impact on the extent and thoroughness of a
given T&E effort.

Q–60. Controlling software changes
a. Changes to the software production baseline are documented in an Engineering Change Proposal-Software

(ECP–S) and categorized based on the urgency of the proposed change and the impact on operational mission
effectiveness, considerations which are usually classified as either emergency, urgent, or routine.

b. An ECP–S often addresses a set of related problems or change reports. Packages of changes are approved and
scheduled for implementation by the appropriate Configuration Control Board (CCB).

Q–61. Scope of testing
a. The developer performs software unit testing and unit integration and testing of the new or modified software

units.
b. The developer should repeat some or all aspects of qualification testing to demonstrate that previous requirements

are unaffected and new or modified requirements are met.
c. When independent developmental or operational evaluations are necessary, the procedure outlined in paragraph

Q–62 below can assist in determining the level of DT/OT needed to support those evaluations. In general, these
evaluations are needed when changes in computer resources (hardware, software, firmware, or communications)—

(1) Have a physical impact on either the operation or support of the system.
(2) Have a noticeable impact on the system’s operational effectiveness, suitability, and survivability, affect user

interfaces, or impact critical mission functions.
(3) Cumulatively affect 15 percent or more of the software units in the system since the last time such evaluations

were made.

Q–62. Determining test support needed for independent system evaluation
a. The procedure described in this paragraph assesses various aspects of the deployed system’s T&E history, current

maintenance environment, and potential impact of the SCP on the system’s operational effectiveness and suitability.
The intimate knowledge and informed judgment of the test IPT and CCB principals should guide the decisions made in
applying the procedure described in this paragraph and in interpreting its results.

b. There are several steps in the procedure—
(1) Determine the potential problems for an SCP using table Q–25.
(2) Determine the likelihood of each problem, using table Q–26.
(3) Determine the severity of each problem, using table Q–27.
(4) Combine the findings of tables Q–26 and Q–27 to determine the location in the matrix of table Q–28. Table

Q–28 will define the amount of testing needed to adequately test the new software that addresses the problem.
(5) Tailor the DT and OT MOPs and MOEs to address the problem.

286 DA PAM 73–1 • 30 May 2003

Table Q–25
Example checklist of potential problems in implementing a software change package

Items concerning— Potential problem in implementing a software change package

1. System performance a. Does the software change affect the way the system operates?
b. Does the software change affect the system’s operational capability, to include—
(1) MNS, ORD, or operational mission profile?
(2) Qualitative and quantitative personnel requirements?
(3) The operational environment?
(4) Critical operational issues?
(5) Operating procedures?
c. Does the software change affect a critical mission function of the system?
d. Does the change affect safety or security features?
e. Does the change affect the system’s critical operational issues and criteria (COIC) or additional is-
sues and criteria (AOIC)?
f. Does the change affect the system’s critical technical parameters (CTP)?
g. Will there be a significant change in the system’s throughput? In the throughput of particular com-
ponents?
h. Will significant changes be made to support software (operating system, DBMS)?

2. Interoperability a. Does the change affect interfaces with any other systems?
b. Is code changed to interface with non-developmental or off-the-shelf software?
c. Is there adverse change in system performance caused by execution or management of peripheral
devices?
d. Are protocols for communication links affected?
e. Are there changes in the input or output formats?
f. Does the software modification impact other hardware/software interfaces?
g. Will procedures for exchanging information with other systems be changed?
(1) Within the battlefield functional area?
(2) With other battlefield functional areas?
(3) With strategic or theater level systems?
(4) With joint systems?
(5) IAW international agreements?

3. Usability a. Is there a significant change in the user displays/reports?
b. Will there be significant changes to the training program?

4. System support a. Does the change affect the system’s support facilities (for example, software tools, support person-
nel, support equipment, and support documentation)?
b. Does the change affect built-in test equipment?
c. Will there be a change in the organization responsible for PDSS?
d. Does the developer lack experience with the tools or products to make the change?

5.Software metrics a. Do any requirements remain untested?
b. Were there any catastrophic or major problems (as defined in table Q–27) experienced during last
deployment of the system?
c. Did any catastrophic or major problems occur during any previous testing of this change package?
Do any priority 1 or 2 problem reports remain open?
d. Is the number of source lines of code added, deleted, or modified greater than 10% of the total fiel-
ded source lines of code?
e. Is the use of computer resources likely to exceed the capacity target upper bound?
f. Have all changed requirements been traced to code and test cases?
g. Does the system currently meet its mean time between failure requirements?
h. Is the change package more than 15 percent behind schedule?

Table Q–26
Determining the likelihood of a problem

Probability of problem is— When the problem will—

Very High
High
Medium
Low

Occur frequently in the system’s life
Occur several times in the system’s life
Likely occur at some time in the system’s life
Probably not occur in the system’s life, but may occur

287DA PAM 73–1 • 30 May 2003

Table Q–27
Determining the impact of a problem

Impact of problem is — If the problem causes —

Catastrophic
Major
Minor
Negligible

Mission failure, loss of system, or loss of personnel
Severe mission degradation, personnel injury, or system damage
Slight mission degradation, personnel injury, or system damage
Less than minor personnel injury or system damage; no mission degradation

Table Q–28
Checklists for IPT and CCB to address probability and impact of a problem

Impact of problem or risk

Probability of problem or risk Negligible Minor Major Catastrophic

Low Light Light/Moderate Light/Moderate Moderate

Medium Light Moderate Moderate/Heavy Heavy

High Moderate Moderate/Heavy Heavy Heavy/Intensive

Very High Moderate Heavy Heavy/Intensive Intensive

Test requirements, based on level of risk—
Intensive: Up to and including full repeated DT/OT from Milestone C plus changes
Heavy: DT with significant OT
Moderate: DT with OT excursions
Light: DT

c. Examine all DT and OT MOPs needed to adequately test the SCP to plan the necessary test events. It is the
responsibility of the evaluator to determine the most effective mix of DT and OT to support their evaluations. This
could entail substantial use of developer test information, concurrent DT/OT exercises, simulations, or other strategies.

d. It is recommended that the checklist (that is, table Q–25) be used several times during the course of SCP planning
and implementation to improve the estimate as more information becomes known. The last check should contain no
“unknown” answers—mark these as “yes” to represent worst case.

Q–63. Other considerations
a. System post deployment review.
(1) The PM should plan to convene one or more system post-deployment reviews (SPRs) during PDSS to determine

how well the system is functioning. The first SPR is recommended approximately 6 months after all initial units are
equipped or all site installation is completed. The review should assess—

(a) How well the operational system is satisfying user requirements to meet the stated mission.
(b) The degree to which the system operates as the user expects and provides the services expected.
(2) The PDSS agent uses SPR results to identify problem areas and develop changes that will improve system

performance and usability. Additional reviews throughout the deployment and operations phase provide assurance that
the SCPs continue to satisfy user needs and improve overall system quality. The initial system corrective actions,
problem areas, and changes dictate the content of the reviews.

b. Emergency changes. In response to critical situations, emergency changes may need to be released to the field
within 48 hours. While all changes must undergo validation, verification, and regression testing, emergency changes to
deployed systems may not require formal developmental testing or operational testing prior to release. All emergency
changes, however, will undergo formal testing with the next planned updates. The PM, with the concurrence of the
system user, may only be capable of performing limited testing of emergency software corrections prior to granting
release.

c. Test reusability. Test cases, data, and procedures stored in developer SDFs may be necessary or desirable for
enabling the LCSEC/PDSS agent to retest software during maintenance more effectively. If so, the appropriate items
should be included in the technical data package delivered by the developer.

Section IX
Software Problem Change Report Process

Q–64. Software problem change report
a. A software problem change report (PCR) is the formal description of any problem that has been observed in an

288 DA PAM 73–1 • 30 May 2003

“approved” software product that has completed some level of evaluation and has been placed under configuration
control. Depending on the phase of the software development effort, the approved product baseline may be a set of
requirements documents or a complete software program.

b. Software PCRs are used not only to identify problems, but also to track the status of problems until they are
resolved. It is important for evaluators to understand the software PCR process because PCRs are the most common
measure of software product quality.

c. Other common terms for software PCRs are Software Trouble Report (STR), Software Problem Report (SPR),
and software problem and defect.

Q–65. Information provided in a software problem change report
a. Figure Q–30 provides a detailed description of the information that is typically provided in a software PCR. The

system evaluator reviews individual software PCRs to ensure proper priority classification criticality. The team must be
aware of the overall status of software PCRs on a project to assess the magnitude of the problems and their potential
impact. The types and numbers of problems can measure the magnitude of software problems. The potential impact of
software problems can be defined by the criticality of the problems and the probability that they will be resolved before
the system is fielded. Figure Q–31 describes a common classification scheme to identify the type and criticality of
software problems.

Figure Q–30. Typical information provided in a software PCR

289DA PAM 73–1 • 30 May 2003

Figure Q–31. PCR category and criticality codes

b. A PCR can only be written if a problem has been observed. The evaluator must always assess the status of
software PCRs with an understanding of the capability of the project to find and identify problems. The capability to
identify problems includes not only the effectiveness of the software test program, but also the ability of the technical
and management processes to identify and resolve problems in all related elements of the project, including systems
requirements and documentation. The number and age of unresolved software PCRs reflect the ability of the developer
to resolve problems. This information gives the evaluator an indication of the likelihood that software problems will be
resolved before the system is fielded.

Q–66. The process for managing software PCRs
a. Every software developer and maintenance activity must implement a corrective action process to manage the

problems that are detected in the approved software product baseline. The corrective action process must be a “closed-
loop” process in which software PCR forms are written on all detected problems, monitored in a tracking and reporting
system, and marked as closed when the problem is corrected. The same procedures apply for both hardware and
software PCRs.

b. A software PCR usually can be written and submitted by anyone, including system developers, system operators,
testing personnel, and maintenance or installation, integration, and production personnel. A system evaluator should
ensure that, at a minimum, the acquisition or maintenance agent manages an effective software PCR, using the
following specific steps:

(1) Designate a configuration management (CM) authority to determine if the PCR is very minor or trivial, or if
action should be taken. Based on knowledge of technical and program management issues on the project, the CM

290 DA PAM 73–1 • 30 May 2003

authority approves or rejects very minor or trivial PCRs. In general, any change that does not affect performance,
requirements, or system interfaces may be considered minor.

(2) If the CM authority determines that action should be taken on a software PCR, the next step is to enter the PCR
into a tracking system, which is usually a database file that is managed by the CM authority. Only the CM authority
can subsequently modify or delete a PCR that has been submitted.

(3) The next step of the CM authority is to decide if the required change should be brought before the Configuration
Control Board (CCB). The CCB must approve any problem or proposed change that will require additional project
resources or will impact other system or software elements within or outside of the project. These changes are usually
called Class I changes to distinguish from Class II changes that can be approved by the CM authority without review
by the CCB. The criteria used to identify Class I and II changes are established by the CCB for each project.

(4) The CM authority periodically produces a report from the PCR file on the status of all PCRs that have been
submitted and are being processed.

(5) A copy of every Class I software PCR will be provided to the CCB, containing a technical description of the
proposed change and the associated cost.

(6) After reviewing the completed Class I software PCR form, often called a proposed software Engineering Change
Proposal (ECP), the chairman of the CCB will make the final decision to convene a CCB meeting for the PCR. The
CCB meetings are usually scheduled on a regular basis to review a group of PCRs or proposed ECPs at one time. A
CCB meeting will be convened immediately for the most critical PCRs.

(7) If the CCB approves a software PCR or proposed software ECP, the result is an approved and funded software
ECP that typically must be implemented as soon as possible.

(8) The final step for a software PCR in a corrective action process is to document that the corrective action for both
Class I and II changes have been implemented and tested.

Q–67. Evaluator responsibilities for software PCRs
An evaluator must assess the status of software PCRs throughout the software life cycle, especially prior to each
upcoming test event. As a minimum, the evaluation should consider the effect of unresolved problems that remain in
the software baseline that will be tested, the trends in the software PCRs that have been reported, the potential impact
on the future of the project, and the status of corrective actions. The following paragraphs provide tips for the evaluator
in assessing the software PCR status.

a. The effect of unresolved PCRs.
(1) Unresolved priority 1 or 2 software PCRs may cause safety hazards or prohibit the system from performing

critical mission functions (CMFs). These PCRs should be eliminated before any system-level test is performed.
(2) Although testing is usually performed with unresolved priority 3 PCRs, the evaluator should review the impact

analyses that are submitted with each priority 3 PCR. A priority 3 PCR has the same potential affect on the system
critical mission functions as a priority 2 PCR, but a workaround exists to avoid the system consequence. The system
evaluator should evaluate the cumulative effect of the workarounds and the potential volume of non-standard actions
that will be required to achieve the prescribed mission performance.

(3) T o o m a n y u n r e s o l v e d l o w - p r i o r i t y P C R s m a y h a v e a c u m u l a t i v e i m p a c t t h a t w i l l d e g r a d e t h e s y s t e m
performance.

(4) If a software item affects a critical mission function, a software reliability analysis may be justified for additional
insight into the probability of a failure occurring during an upcoming test event or in the final product.

b. Trends in software PCRs.
(1) A trend that shows an increasing number of PCRs that are not quickly resolved indicates that the developer’s

process cannot deliver a high-quality product. PCRs should be resolved as quickly as possible to allow adequate
regression testing and ensure problems do not occur when the changes are integrated into the approved product
baseline.

(2) The system evaluator should be aware of software products or items that have experienced many problems.
Experience has shown that these items are usually difficult to develop and are more likely to contain errors that are not
detected.

c. The status of corrective actions.
(1) Evaluating the status of corrective actions must consider the effectiveness of retesting the software changes that

have been made to resolve PCRs. This retesting process is also known as regression testing. Regression testing is
needed to ensure that changes have been correctly implemented and that additional problems have not been introduced
by the changes. Regression testing consists of repeating a subset of the previous test cases and test procedures after
software changes have been made.

(2) The minimum requirements for regression testing are—
(a) All test cases and test procedures in which the software problem was experienced in the previous testing have

been repeated, and the results have met acceptance criteria and have been recorded.
(b) All test cases and test procedures for software that is affected by the changes to resolve the software PCR have

been repeated, even if there were no problems during the previous testing of that software.

291DA PAM 73–1 • 30 May 2003

Appendix R
Department of Army Test Facilities

R–1. Overview of Army test facilities
a. This appendix provides synopses of DA test facilities for quick reference. More detailed information on the

capabilities may be obtained from the test facility or its parent command.
b. The Army maintains and operates six of the DOD Major Range and Test Facility Base (MRTFB) facilities, which

are regarded as “national assets,” that are maintained under uniform guidelines primarily for DOD T&E support
missions and functions. The U. S. Army Space and Missile Defense Command (SMDC) operates two MRTFBs (the
High Energy Laser Systems Test Facility and the Ronald Reagan Ballistic Missile Defense Test Site). The U.S. Army
Test and Evaluation Command (ATEC) operates the remaining four MRTFB activities (US Army Aberdeen Test
Center, U.S. Army Dugway Proving Ground, U.S. Army Yuma Proving Ground, and the U.S. Army White Sands
Missile Range, which includes the Electronic Proving Ground) as well as two other test facilities (US Army Aviation
Technical Test Center and the U.S. Army Redstone Technical Test Center). A synopsis of each follows.

R–2. Aberdeen Test Center
Aberdeen Test Center (ATC), located on Aberdeen Proving Ground, Maryland. It is a multipurpose test center with
diverse capabilities and the Defense Department’s lead agency for developmental land combat and direct-fire testing.

a. ATC provides a single location where combat systems can be subjected to a full range of tests from automotive
endurance and full weapons performance through induced environmental extremes to full-scale live fire vulnerability/
survivability/lethality testing using an extensive array of test ranges and facilities, simulators, and models. Testing is
conducted on both full systems and system components and includes armored vehicles, guns, ammunition, trucks,
bridges, generators, night vision devices, individual equipment such as boots, uniforms, and helmets, and surface and
underwater naval systems.

b. ATC offers numerous exterior and interior firing ranges, automotive courses, chambers simulating various
environmental conditions, two underwater explosion ponds, sophisticated non-destructive test facilities, multifunctional
laboratories, and an extensive industrial complex that includes maintenance and experimental fabrication capabilities.
Ammunition is prepared in on-site ammunition plants to meet customer needs. Experienced personnel also conduct
and/or support tests at other locations throughout the world with extensive mobile instrumentation.

c. ATC serves as the host for the Army Pulse Radiation Facility, the nation’s only combined ionizing nuclear
radiation environmental simulation laboratory capable of supporting DT and OT from discrete electronic components
up through complete systems at full threat specification levels.

R–3. Aviation Technical Test Center
Aviation Technical Test Center (ATTC), located at Cairns Army Airfield (CAAF), is a tenant of the U.S. Army
Aviation Center at Fort Rucker, AL. With nearly 50 years of experience in the field of aviation developmental testing,
it is a highly flexible test organization that provides a high degree of test mobility on the total integrated aviation
system.

a. ATTC conducts developmental flight-testing and airworthiness qualification testing on subsonic fixed- and rotary-
wing aircraft, aircraft systems and subsystems, and aviation support equipment. Flight-testing focuses on assessing
system performance, system integration with the aircraft and other installed systems, system safety, soldier/machine
interface, human factors engineering, and logistics supportability. Airworthiness qualification testing, which is per-
formed by experimental test pilots, assesses the flight characteristics and handling qualities of the aerial vehicle and its
in-flight performance. Because of the test mobility inherent to aviation, ATTC has the capability to conduct extensive
testing at off-site locations throughout the continental US, where specific test capabilities or climatic conditions are
required.

b. ATTC facilities include three hangars and 12 support shops located on CAAF and access to two hard-surface
runways. The ATTC maintains a fleet of 16 test bed aircraft, representing the Army’s fielded aviation systems. The
one-of-a kind Helicopter Icing Spray System allows ATTC to evaluate airframe icing characteristics and de-icing/anti-
icing system performance in artificial icing conditions.

R–4. Central Test Support Facility
The CTSF, located on Fort Hood, Texas, is operated and funded by the Program Executive Office C3T. It is identified
as the intra-Army interoperability testing facility to perform the communications/data interfaces testing. The mission is
to test all-Army C4I systems to ensure interoperability in accordance with Intra-Army Interoperability Certification
Policy, Acquisition Executive Memorandum “Intra-Army Interoperability Certification,” Secretary of the Army, Infor-
mation Systems (IAA) (SAIS–IAA), dated 3 December 2000. The CTSF testing process is modeled after the Army
Test and Evaluation Command/US Army Operational Test Command guidelines.

a. CTSF testing in support of the intra-Army certification process will not duplicate or limit testing conducted by the
Joint Interoperability Test Command (JITC), the U.S. Army Test and Evaluation Command, or other test activities. The

292 DA PAM 73–1 • 30 May 2003

